Konfirmatorna faktorska analiza u R-u (lavaan paket)

lavaan tutorial: http://lavaan.ugent.be/tutorial/index.html

Učitavanje paketa

# install.packages("foreign") # za učitavanje fajla sa podacima
# install.packages("lavaan", dependencies=TRUE) # za testiranje modela

library(foreign)
library(lavaan)
## This is lavaan 0.6-9
## lavaan is FREE software! Please report any bugs.

Učitavanje podataka

# KFA_ds = read.spss(file.choose(), use.value.labels=FALSE, to.data.frame=TRUE)

setwd(dirname(rstudioapi::getActiveDocumentContext()$path))
KFA_ds <- read.spss("KFA_podaci.sav", use.value.labels=FALSE, to.data.frame=TRUE)
## re-encoding from CP1252

Definisanje modela

za dodatne informacije o sintaksnom definisanju modela
?lavaan::model.syntax

KFA.3Fmodel <- ' intrinsic =~ jss1 + jss6 + jss8 + jss9 + jss10 + jss15 + jss16
                  organizational =~ jss2 + jss7 + jss12 + jss13 + jss14
                  salary_promotion =~ jss4 + jss5 '

Procena modela

za više informacija o proceni modela
?lavaan::cfa

fit.3F <- cfa(KFA.3Fmodel, data=KFA_ds, missing="ML")

Ispis analize

za više informacija o ispisu analize
?lavaan::lavaan-class

summary(fit.3F, header=TRUE, fit.measures=TRUE, standardized=TRUE)
## lavaan 0.6-9 ended normally after 69 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        45
##                                                       
##   Number of observations                           139
##   Number of missing patterns                        16
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               223.483
##   Degrees of freedom                                74
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               966.747
##   Degrees of freedom                                91
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.829
##   Tucker-Lewis Index (TLI)                       0.790
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3331.241
##   Loglikelihood unrestricted model (H1)      -3219.500
##                                                       
##   Akaike (AIC)                                6752.483
##   Bayesian (BIC)                              6884.534
##   Sample-size adjusted Bayesian (BIC)         6742.165
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.121
##   90 Percent confidence interval - lower         0.103
##   90 Percent confidence interval - upper         0.139
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.078
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                       Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   intrinsic =~                                                             
##     jss1                 1.000                               0.625    0.590
##     jss6                 1.889    0.300    6.295    0.000    1.180    0.715
##     jss8                 1.330    0.290    4.583    0.000    0.831    0.468
##     jss9                 1.786    0.289    6.189    0.000    1.115    0.722
##     jss10                1.994    0.299    6.675    0.000    1.246    0.827
##     jss15                2.183    0.326    6.695    0.000    1.364    0.829
##     jss16                1.535    0.259    5.920    0.000    0.959    0.651
##   organizational =~                                                        
##     jss2                 1.000                               1.406    0.738
##     jss7                 1.185    0.143    8.316    0.000    1.667    0.748
##     jss12                0.737    0.119    6.203    0.000    1.037    0.564
##     jss13                1.019    0.112    9.078    0.000    1.433    0.804
##     jss14                1.175    0.135    8.715    0.000    1.653    0.788
##   salary_promotion =~                                                      
##     jss4                 1.000                               0.998    0.543
##     jss5                 1.762    0.506    3.479    0.001    1.757    0.937
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   intrinsic ~~                                                           
##     organizational     0.578    0.130    4.432    0.000    0.657    0.657
##     salary_promotn     0.243    0.097    2.496    0.013    0.390    0.390
##   organizational ~~                                                      
##     salary_promotn     0.690    0.244    2.824    0.005    0.492    0.492
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .jss1              5.892    0.091   64.772    0.000    5.892    5.568
##    .jss6              5.249    0.141   37.349    0.000    5.249    3.181
##    .jss8              4.439    0.151   29.474    0.000    4.439    2.500
##    .jss9              5.446    0.132   41.259    0.000    5.446    3.522
##    .jss10             5.495    0.128   42.822    0.000    5.495    3.646
##    .jss15             5.285    0.146   36.288    0.000    5.285    3.211
##    .jss16             5.419    0.126   42.989    0.000    5.419    3.681
##    .jss2              5.101    0.162   31.563    0.000    5.101    2.677
##    .jss7              4.282    0.189   22.600    0.000    4.282    1.921
##    .jss12             4.271    0.157   27.227    0.000    4.271    2.322
##    .jss13             4.777    0.151   31.580    0.000    4.777    2.679
##    .jss14             4.302    0.178   24.142    0.000    4.302    2.051
##    .jss4              4.743    0.156   30.365    0.000    4.743    2.582
##    .jss5              2.861    0.160   17.855    0.000    2.861    1.525
##     intrinsic         0.000                               0.000    0.000
##     organizational    0.000                               0.000    0.000
##     salary_promotn    0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .jss1              0.730    0.096    7.612    0.000    0.730    0.652
##    .jss6              1.331    0.190    7.007    0.000    1.331    0.489
##    .jss8              2.462    0.308    7.985    0.000    2.462    0.781
##    .jss9              1.146    0.179    6.393    0.000    1.146    0.479
##    .jss10             0.720    0.138    5.203    0.000    0.720    0.317
##    .jss15             0.849    0.161    5.267    0.000    0.849    0.313
##    .jss16             1.248    0.177    7.049    0.000    1.248    0.576
##    .jss2              1.652    0.240    6.891    0.000    1.652    0.455
##    .jss7              2.193    0.330    6.641    0.000    2.193    0.441
##    .jss12             2.309    0.299    7.719    0.000    2.309    0.682
##    .jss13             1.126    0.189    5.971    0.000    1.126    0.354
##    .jss14             1.666    0.267    6.228    0.000    1.666    0.379
##    .jss4              2.378    0.384    6.189    0.000    2.378    0.705
##    .jss5              0.431    0.801    0.538    0.590    0.431    0.122
##     intrinsic         0.390    0.112    3.483    0.000    1.000    1.000
##     organizational    1.978    0.411    4.818    0.000    1.000    1.000
##     salary_promotn    0.995    0.385    2.583    0.010    1.000    1.000

Hi-kvadrat nije isti kao u AMOS-u. AKo želimo da dobijemo istu verdnost, treba da uključimo “wishart” opciju. Vrednosti AIC i BIC se takođe razlikuju zbog drugačije aproksimacije u AMOS-u i lavaan-u, ne mogu se podesiti da budu identični, ali su konzistentni (daju isti redosled modela po visini indeksa).

fit.3F <- cfa(KFA.3Fmodel, data=KFA_ds, missing="ML", likelihood = "wishart")
summary(fit.3F, header=TRUE, fit.measures=TRUE, standardized=TRUE)
## lavaan 0.6-9 ended normally after 68 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        45
##                                                       
##   Number of observations                           139
##   Number of missing patterns                        16
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               221.875
##   Degrees of freedom                                74
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               959.792
##   Degrees of freedom                                91
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.830
##   Tucker-Lewis Index (TLI)                       0.791
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3331.241
##   Loglikelihood unrestricted model (H1)      -3219.500
##                                                       
##   Akaike (AIC)                                6752.483
##   Bayesian (BIC)                              6884.534
##   Sample-size adjusted Bayesian (BIC)         6742.165
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.120
##   90 Percent confidence interval - lower         0.102
##   90 Percent confidence interval - upper         0.139
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.078
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                       Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   intrinsic =~                                                             
##     jss1                 1.000                               0.625    0.590
##     jss6                 1.889    0.301    6.273    0.000    1.180    0.715
##     jss8                 1.330    0.291    4.567    0.000    0.831    0.468
##     jss9                 1.786    0.290    6.166    0.000    1.115    0.722
##     jss10                1.994    0.300    6.651    0.000    1.246    0.827
##     jss15                2.183    0.327    6.671    0.000    1.364    0.829
##     jss16                1.535    0.260    5.898    0.000    0.959    0.651
##   organizational =~                                                        
##     jss2                 1.000                               1.406    0.738
##     jss7                 1.185    0.143    8.286    0.000    1.667    0.748
##     jss12                0.737    0.119    6.181    0.000    1.037    0.564
##     jss13                1.019    0.113    9.045    0.000    1.433    0.804
##     jss14                1.175    0.135    8.683    0.000    1.653    0.788
##   salary_promotion =~                                                      
##     jss4                 1.000                               0.998    0.543
##     jss5                 1.762    0.508    3.467    0.001    1.757    0.937
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   intrinsic ~~                                                           
##     organizational     0.578    0.131    4.416    0.000    0.657    0.657
##     salary_promotn     0.243    0.098    2.487    0.013    0.390    0.390
##   organizational ~~                                                      
##     salary_promotn     0.690    0.245    2.814    0.005    0.492    0.492
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .jss1              5.892    0.091   64.538    0.000    5.892    5.568
##    .jss6              5.249    0.141   37.214    0.000    5.249    3.181
##    .jss8              4.439    0.151   29.367    0.000    4.439    2.500
##    .jss9              5.446    0.132   41.110    0.000    5.446    3.522
##    .jss10             5.495    0.129   42.668    0.000    5.495    3.646
##    .jss15             5.285    0.146   36.157    0.000    5.285    3.211
##    .jss16             5.419    0.127   42.834    0.000    5.419    3.681
##    .jss2              5.101    0.162   31.449    0.000    5.101    2.677
##    .jss7              4.282    0.190   22.519    0.000    4.282    1.921
##    .jss12             4.271    0.157   27.129    0.000    4.271    2.322
##    .jss13             4.777    0.152   31.466    0.000    4.777    2.679
##    .jss14             4.302    0.179   24.055    0.000    4.302    2.051
##    .jss4              4.743    0.157   30.256    0.000    4.743    2.582
##    .jss5              2.861    0.161   17.790    0.000    2.861    1.525
##     intrinsic         0.000                               0.000    0.000
##     organizational    0.000                               0.000    0.000
##     salary_promotn    0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .jss1              0.730    0.096    7.584    0.000    0.730    0.652
##    .jss6              1.331    0.191    6.982    0.000    1.331    0.489
##    .jss8              2.462    0.309    7.957    0.000    2.462    0.781
##    .jss9              1.146    0.180    6.370    0.000    1.146    0.479
##    .jss10             0.720    0.139    5.185    0.000    0.720    0.317
##    .jss15             0.849    0.162    5.248    0.000    0.849    0.313
##    .jss16             1.248    0.178    7.024    0.000    1.248    0.576
##    .jss2              1.652    0.241    6.867    0.000    1.652    0.455
##    .jss7              2.193    0.331    6.617    0.000    2.193    0.441
##    .jss12             2.309    0.300    7.691    0.000    2.309    0.682
##    .jss13             1.126    0.189    5.950    0.000    1.126    0.354
##    .jss14             1.666    0.268    6.205    0.000    1.666    0.379
##    .jss4              2.378    0.386    6.166    0.000    2.378    0.705
##    .jss5              0.431    0.803    0.536    0.592    0.431    0.122
##     intrinsic         0.390    0.112    3.470    0.001    1.000    1.000
##     organizational    1.978    0.412    4.800    0.000    1.000    1.000
##     salary_promotn    0.995    0.387    2.574    0.010    1.000    1.000

Izdvajanje željenih delova ispisa:

Samo procene parametara

parameterEstimates(fit.3F)
##                 lhs op              rhs   est    se      z pvalue ci.lower ci.upper
## 1         intrinsic =~             jss1 1.000 0.000     NA     NA    1.000    1.000
## 2         intrinsic =~             jss6 1.889 0.301  6.273  0.000    1.299    2.479
## 3         intrinsic =~             jss8 1.330 0.291  4.567  0.000    0.759    1.901
## 4         intrinsic =~             jss9 1.786 0.290  6.166  0.000    1.218    2.353
## 5         intrinsic =~            jss10 1.994 0.300  6.651  0.000    1.407    2.582
## 6         intrinsic =~            jss15 2.183 0.327  6.671  0.000    1.542    2.825
## 7         intrinsic =~            jss16 1.535 0.260  5.898  0.000    1.025    2.045
## 8    organizational =~             jss2 1.000 0.000     NA     NA    1.000    1.000
## 9    organizational =~             jss7 1.185 0.143  8.286  0.000    0.905    1.466
## 10   organizational =~            jss12 0.737 0.119  6.181  0.000    0.504    0.971
## 11   organizational =~            jss13 1.019 0.113  9.045  0.000    0.798    1.240
## 12   organizational =~            jss14 1.175 0.135  8.683  0.000    0.910    1.441
## 13 salary_promotion =~             jss4 1.000 0.000     NA     NA    1.000    1.000
## 14 salary_promotion =~             jss5 1.762 0.508  3.467  0.001    0.766    2.758
## 15             jss1 ~~             jss1 0.730 0.096  7.584  0.000    0.541    0.918
## 16             jss6 ~~             jss6 1.331 0.191  6.982  0.000    0.957    1.704
## 17             jss8 ~~             jss8 2.462 0.309  7.957  0.000    1.856    3.069
## 18             jss9 ~~             jss9 1.146 0.180  6.370  0.000    0.793    1.498
## 19            jss10 ~~            jss10 0.720 0.139  5.185  0.000    0.448    0.992
## 20            jss15 ~~            jss15 0.849 0.162  5.248  0.000    0.532    1.166
## 21            jss16 ~~            jss16 1.248 0.178  7.024  0.000    0.899    1.596
## 22             jss2 ~~             jss2 1.652 0.241  6.867  0.000    1.181    2.124
## 23             jss7 ~~             jss7 2.193 0.331  6.617  0.000    1.544    2.843
## 24            jss12 ~~            jss12 2.309 0.300  7.691  0.000    1.720    2.897
## 25            jss13 ~~            jss13 1.126 0.189  5.950  0.000    0.755    1.497
## 26            jss14 ~~            jss14 1.666 0.268  6.205  0.000    1.140    2.192
## 27             jss4 ~~             jss4 2.378 0.386  6.166  0.000    1.622    3.134
## 28             jss5 ~~             jss5 0.431 0.803  0.536  0.592   -1.144    2.006
## 29        intrinsic ~~        intrinsic 0.390 0.112  3.470  0.001    0.170    0.611
## 30   organizational ~~   organizational 1.978 0.412  4.800  0.000    1.170    2.785
## 31 salary_promotion ~~ salary_promotion 0.995 0.387  2.574  0.010    0.237    1.753
## 32        intrinsic ~~   organizational 0.578 0.131  4.416  0.000    0.321    0.834
## 33        intrinsic ~~ salary_promotion 0.243 0.098  2.487  0.013    0.052    0.435
## 34   organizational ~~ salary_promotion 0.690 0.245  2.814  0.005    0.209    1.170
## 35             jss1 ~1                  5.892 0.091 64.538  0.000    5.713    6.071
## 36             jss6 ~1                  5.249 0.141 37.214  0.000    4.972    5.525
## 37             jss8 ~1                  4.439 0.151 29.367  0.000    4.143    4.735
## 38             jss9 ~1                  5.446 0.132 41.110  0.000    5.186    5.705
## 39            jss10 ~1                  5.495 0.129 42.668  0.000    5.243    5.747
## 40            jss15 ~1                  5.285 0.146 36.157  0.000    4.999    5.572
## 41            jss16 ~1                  5.419 0.127 42.834  0.000    5.171    5.667
## 42             jss2 ~1                  5.101 0.162 31.449  0.000    4.783    5.419
## 43             jss7 ~1                  4.282 0.190 22.519  0.000    3.910    4.655
## 44            jss12 ~1                  4.271 0.157 27.129  0.000    3.962    4.579
## 45            jss13 ~1                  4.777 0.152 31.466  0.000    4.479    5.075
## 46            jss14 ~1                  4.302 0.179 24.055  0.000    3.952    4.653
## 47             jss4 ~1                  4.743 0.157 30.256  0.000    4.436    5.050
## 48             jss5 ~1                  2.861 0.161 17.790  0.000    2.546    3.177
## 49        intrinsic ~1                  0.000 0.000     NA     NA    0.000    0.000
## 50   organizational ~1                  0.000 0.000     NA     NA    0.000    0.000
## 51 salary_promotion ~1                  0.000 0.000     NA     NA    0.000    0.000

Samo standardizovane procene parametara

standardizedSolution(fit.3F) 
##                 lhs op              rhs est.std    se      z pvalue ci.lower ci.upper
## 1         intrinsic =~             jss1   0.590 0.064  9.269  0.000    0.465    0.715
## 2         intrinsic =~             jss6   0.715 0.049 14.533  0.000    0.619    0.812
## 3         intrinsic =~             jss8   0.468 0.073  6.411  0.000    0.325    0.611
## 4         intrinsic =~             jss9   0.722 0.054 13.452  0.000    0.616    0.827
## 5         intrinsic =~            jss10   0.827 0.040 20.534  0.000    0.748    0.905
## 6         intrinsic =~            jss15   0.829 0.040 20.924  0.000    0.751    0.906
## 7         intrinsic =~            jss16   0.651 0.060 10.915  0.000    0.534    0.768
## 8    organizational =~             jss2   0.738 0.046 15.957  0.000    0.647    0.829
## 9    organizational =~             jss7   0.748 0.046 16.193  0.000    0.657    0.838
## 10   organizational =~            jss12   0.564 0.065  8.659  0.000    0.436    0.691
## 11   organizational =~            jss13   0.804 0.040 20.255  0.000    0.726    0.882
## 12   organizational =~            jss14   0.788 0.041 19.092  0.000    0.707    0.869
## 13 salary_promotion =~             jss4   0.543 0.092  5.875  0.000    0.362    0.724
## 14 salary_promotion =~             jss5   0.937 0.122  7.669  0.000    0.697    1.176
## 15             jss1 ~~             jss1   0.652 0.075  8.667  0.000    0.504    0.799
## 16             jss6 ~~             jss6   0.489 0.070  6.944  0.000    0.351    0.627
## 17             jss8 ~~             jss8   0.781 0.068 11.433  0.000    0.647    0.915
## 18             jss9 ~~             jss9   0.479 0.077  6.193  0.000    0.328    0.631
## 19            jss10 ~~            jss10   0.317 0.067  4.762  0.000    0.186    0.447
## 20            jss15 ~~            jss15   0.313 0.066  4.774  0.000    0.185    0.442
## 21            jss16 ~~            jss16   0.576 0.078  7.404  0.000    0.423    0.728
## 22             jss2 ~~             jss2   0.455 0.068  6.665  0.000    0.321    0.589
## 23             jss7 ~~             jss7   0.441 0.069  6.391  0.000    0.306    0.576
## 24            jss12 ~~            jss12   0.682 0.073  9.295  0.000    0.538    0.826
## 25            jss13 ~~            jss13   0.354 0.064  5.549  0.000    0.229    0.479
## 26            jss14 ~~            jss14   0.379 0.065  5.819  0.000    0.251    0.506
## 27             jss4 ~~             jss4   0.705 0.100  7.018  0.000    0.508    0.902
## 28             jss5 ~~             jss5   0.122 0.229  0.535  0.593   -0.326    0.571
## 29        intrinsic ~~        intrinsic   1.000 0.000     NA     NA    1.000    1.000
## 30   organizational ~~   organizational   1.000 0.000     NA     NA    1.000    1.000
## 31 salary_promotion ~~ salary_promotion   1.000 0.000     NA     NA    1.000    1.000
## 32        intrinsic ~~   organizational   0.657 0.062 10.532  0.000    0.535    0.780
## 33        intrinsic ~~ salary_promotion   0.390 0.097  4.019  0.000    0.200    0.581
## 34   organizational ~~ salary_promotion   0.492 0.096  5.136  0.000    0.304    0.679
## 35             jss1 ~1                    5.568 0.357 15.613  0.000    4.869    6.267
## 36             jss6 ~1                    3.181 0.211 15.098  0.000    2.768    3.594
## 37             jss8 ~1                    2.500 0.173 14.460  0.000    2.161    2.839
## 38             jss9 ~1                    3.522 0.235 15.017  0.000    3.063    3.982
## 39            jss10 ~1                    3.646 0.243 15.023  0.000    3.170    4.122
## 40            jss15 ~1                    3.211 0.232 13.854  0.000    2.757    3.666
## 41            jss16 ~1                    3.681 0.241 15.256  0.000    3.208    4.154
## 42             jss2 ~1                    2.677 0.182 14.690  0.000    2.320    3.034
## 43             jss7 ~1                    1.921 0.144 13.369  0.000    1.639    2.202
## 44            jss12 ~1                    2.322 0.165 14.091  0.000    1.999    2.644
## 45            jss13 ~1                    2.679 0.182 14.691  0.000    2.321    3.036
## 46            jss14 ~1                    2.051 0.151 13.588  0.000    1.755    2.347
## 47             jss4 ~1                    2.582 0.178 14.524  0.000    2.234    2.931
## 48             jss5 ~1                    1.525 0.127 12.016  0.000    1.276    1.774
## 49        intrinsic ~1                    0.000 0.000     NA     NA    0.000    0.000
## 50   organizational ~1                    0.000 0.000     NA     NA    0.000    0.000
## 51 salary_promotion ~1                    0.000 0.000     NA     NA    0.000    0.000

Samo pokazatelji fita modela

fitMeasures(fit.3F)
##                npar                fmin               chisq                  df              pvalue 
##              45.000               0.804             221.875              74.000               0.000 
##      baseline.chisq         baseline.df     baseline.pvalue                 cfi                 tli 
##             959.792              91.000               0.000               0.830               0.791 
##                nnfi                 rfi                 nfi                pnfi                 ifi 
##               0.791               0.716               0.769               0.625               0.833 
##                 rni                logl   unrestricted.logl                 aic                 bic 
##               0.830           -3331.241           -3219.500            6752.483            6884.534 
##              ntotal                bic2               rmsea      rmsea.ci.lower      rmsea.ci.upper 
##             139.000            6742.165               0.120               0.102               0.139 
##        rmsea.pvalue                 rmr          rmr_nomean                srmr        srmr_bentler 
##               0.000               0.235               0.250               0.078               0.078 
## srmr_bentler_nomean                crmr         crmr_nomean          srmr_mplus   srmr_mplus_nomean 
##               0.082               0.083               0.088               0.078               0.082 
##               cn_05               cn_01                 gfi                agfi                pgfi 
##              60.138              66.433               0.965               0.943               0.600 
##                 mfi                ecvi 
##               0.585               2.260

Samo konkretni pokazatelj fita modela

fitMeasures(fit.3F, "cfi")
##  cfi 
## 0.83

Vektor izabranih pokazatelja

fitMeasures(fit.3F, c("cfi","rmsea","srmr")) 
##   cfi rmsea  srmr 
## 0.830 0.120 0.078

Modification indices

modindices(fit.3F) 
##                  lhs op   rhs     mi    epc sepc.lv sepc.all sepc.nox
## 52         intrinsic =~  jss2  0.629  0.244   0.152    0.080    0.080
## 53         intrinsic =~  jss7  0.223 -0.169  -0.106   -0.047   -0.047
## 54         intrinsic =~ jss12  0.141  0.126   0.079    0.043    0.043
## 55         intrinsic =~ jss13  0.153  0.108   0.067    0.038    0.038
## 56         intrinsic =~ jss14  0.841 -0.301  -0.188   -0.090   -0.090
## 57         intrinsic =~  jss4  0.007  0.034   0.021    0.012    0.012
## 58         intrinsic =~  jss5  0.007 -0.060  -0.037   -0.020   -0.020
## 59    organizational =~  jss1  2.733 -0.141  -0.198   -0.187   -0.187
## 60    organizational =~  jss6  0.438 -0.079  -0.111   -0.067   -0.067
## 61    organizational =~  jss8 18.853  0.654   0.920    0.518    0.518
## 62    organizational =~  jss9  2.882 -0.189  -0.266   -0.172   -0.172
## 63    organizational =~ jss10  0.446 -0.066  -0.092   -0.061   -0.061
## 64    organizational =~ jss15  4.470  0.240   0.338    0.205    0.205
## 65    organizational =~ jss16  0.378 -0.069  -0.098   -0.066   -0.066
## 66    organizational =~  jss4  0.007 -0.053  -0.074   -0.040   -0.040
## 67    organizational =~  jss5  0.007  0.093   0.131    0.070    0.070
## 68  salary_promotion =~  jss1  1.152 -0.098  -0.098   -0.092   -0.092
## 69  salary_promotion =~  jss6  4.973  0.284   0.283    0.172    0.172
## 70  salary_promotion =~  jss8 12.931  0.582   0.580    0.327    0.327
## 71  salary_promotion =~  jss9  8.158 -0.339  -0.338   -0.219   -0.219
## 72  salary_promotion =~ jss10  3.015 -0.179  -0.179   -0.119   -0.119
## 73  salary_promotion =~ jss15  0.248  0.060   0.060    0.036    0.036
## 74  salary_promotion =~ jss16  1.695  0.157   0.157    0.107    0.107
## 75  salary_promotion =~  jss2  1.040 -0.160  -0.160   -0.084   -0.084
## 76  salary_promotion =~  jss7  1.747 -0.242  -0.241   -0.108   -0.108
## 77  salary_promotion =~ jss12  2.238 -0.260  -0.259   -0.141   -0.141
## 78  salary_promotion =~ jss13  3.854  0.273   0.273    0.153    0.153
## 79  salary_promotion =~ jss14  0.994  0.166   0.165    0.079    0.079
## 80              jss1 ~~  jss6  0.042 -0.020  -0.020   -0.020   -0.020
## 81              jss1 ~~  jss8  1.196 -0.134  -0.134   -0.100   -0.100
## 82              jss1 ~~  jss9  2.025  0.128   0.128    0.140    0.140
## 83              jss1 ~~ jss10  0.660 -0.064  -0.064   -0.088   -0.088
## 84              jss1 ~~ jss15  0.110 -0.030  -0.030   -0.038   -0.038
## 85              jss1 ~~ jss16  6.610  0.235   0.235    0.246    0.246
## 86              jss1 ~~  jss2  0.074  0.029   0.029    0.026    0.026
## 87              jss1 ~~  jss7  2.466 -0.193  -0.193   -0.153   -0.153
## 88              jss1 ~~ jss12  1.560  0.150   0.150    0.115    0.115
## 89              jss1 ~~ jss13  1.077 -0.095  -0.095   -0.105   -0.105
## 90              jss1 ~~ jss14  0.020  0.016   0.016    0.014    0.014
## 91              jss1 ~~  jss4  4.268  0.249   0.249    0.189    0.189
## 92              jss1 ~~  jss5  2.750 -0.192  -0.192   -0.342   -0.342
## 93              jss6 ~~  jss8  5.860  0.413   0.413    0.228    0.228
## 94              jss6 ~~  jss9  0.175 -0.054  -0.054   -0.043   -0.043
## 95              jss6 ~~ jss10  2.101 -0.167  -0.167   -0.171   -0.171
## 96              jss6 ~~ jss15  0.434 -0.087  -0.087   -0.082   -0.082
## 97              jss6 ~~ jss16  5.290  0.296   0.296    0.230    0.230
## 98              jss6 ~~  jss2  0.353  0.087   0.087    0.059    0.059
## 99              jss6 ~~  jss7  0.788 -0.151  -0.151   -0.088   -0.088
## 100             jss6 ~~ jss12 17.617 -0.694  -0.694   -0.396   -0.396
## 101             jss6 ~~ jss13  1.616  0.161   0.161    0.132    0.132
## 102             jss6 ~~ jss14  0.056 -0.036  -0.036   -0.024   -0.024
## 103             jss6 ~~  jss4  1.100 -0.175  -0.175   -0.098   -0.098
## 104             jss6 ~~  jss5  8.464  0.467   0.467    0.617    0.617
## 105             jss8 ~~  jss9  3.427 -0.294  -0.294   -0.175   -0.175
## 106             jss8 ~~ jss10  2.102 -0.200  -0.200   -0.150   -0.150
## 107             jss8 ~~ jss15  0.481 -0.111  -0.111   -0.077   -0.077
## 108             jss8 ~~ jss16  0.742 -0.140  -0.140   -0.080   -0.080
## 109             jss8 ~~  jss2  2.408 -0.292  -0.292   -0.145   -0.145
## 110             jss8 ~~  jss7  0.139  0.082   0.082    0.035    0.035
## 111             jss8 ~~ jss12  0.384 -0.132  -0.132   -0.055   -0.055
## 112             jss8 ~~ jss13 10.578  0.530   0.530    0.318    0.318
## 113             jss8 ~~ jss14  1.901  0.270   0.270    0.133    0.133
## 114             jss8 ~~  jss4  2.287 -0.325  -0.325   -0.134   -0.134
## 115             jss8 ~~  jss5  8.812  0.609   0.609    0.592    0.592
## 116             jss9 ~~ jss10 51.670  0.774   0.774    0.853    0.853
## 117             jss9 ~~ jss15 11.192 -0.412  -0.412   -0.418   -0.418
## 118             jss9 ~~ jss16 11.296 -0.404  -0.404   -0.338   -0.338
## 119             jss9 ~~  jss2  0.005 -0.010  -0.010   -0.007   -0.007
## 120             jss9 ~~  jss7  0.878  0.148   0.148    0.094    0.094
## 121             jss9 ~~ jss12  5.435  0.359   0.359    0.221    0.221
## 122             jss9 ~~ jss13  5.799 -0.284  -0.284   -0.250   -0.250
## 123             jss9 ~~ jss14  0.107 -0.046  -0.046   -0.034   -0.034
## 124             jss9 ~~  jss4  2.580 -0.250  -0.250   -0.151   -0.151
## 125             jss9 ~~  jss5  1.830 -0.203  -0.203   -0.288   -0.288
## 126            jss10 ~~ jss15  0.080 -0.033  -0.033   -0.042   -0.042
## 127            jss10 ~~ jss16 13.516 -0.390  -0.390   -0.412   -0.412
## 128            jss10 ~~  jss2  0.032  0.021   0.021    0.019    0.019
## 129            jss10 ~~  jss7  1.189  0.147   0.147    0.117    0.117
## 130            jss10 ~~ jss12  2.058  0.187   0.187    0.145    0.145
## 131            jss10 ~~ jss13  0.038 -0.020  -0.020   -0.022   -0.022
## 132            jss10 ~~ jss14  3.231 -0.217  -0.217   -0.198   -0.198
## 133            jss10 ~~  jss4  3.441 -0.245  -0.245   -0.187   -0.187
## 134            jss10 ~~  jss5  0.182 -0.055  -0.055   -0.099   -0.099
## 135            jss15 ~~ jss16 14.458  0.463   0.463    0.450    0.450
## 136            jss15 ~~  jss2  0.452  0.091   0.091    0.077    0.077
## 137            jss15 ~~  jss7  0.324 -0.090  -0.090   -0.066   -0.066
## 138            jss15 ~~ jss12  0.000  0.002   0.002    0.001    0.001
## 139            jss15 ~~ jss13  2.854  0.199   0.199    0.204    0.204
## 140            jss15 ~~ jss14  0.043  0.029   0.029    0.025    0.025
## 141            jss15 ~~  jss4  3.266  0.279   0.279    0.196    0.196
## 142            jss15 ~~  jss5  1.308 -0.171  -0.171   -0.283   -0.283
## 143            jss16 ~~  jss2  0.012  0.015   0.015    0.011    0.011
## 144            jss16 ~~  jss7  0.078 -0.045  -0.045   -0.027   -0.027
## 145            jss16 ~~ jss12  0.002 -0.006  -0.006   -0.004   -0.004
## 146            jss16 ~~ jss13  3.095 -0.213  -0.213   -0.180   -0.180
## 147            jss16 ~~ jss14  0.664  0.119   0.119    0.082    0.082
## 148            jss16 ~~  jss4  7.321  0.432   0.432    0.251    0.251
## 149            jss16 ~~  jss5  0.001 -0.005  -0.005   -0.007   -0.007
## 150             jss2 ~~  jss7  0.041  0.043   0.043    0.023    0.023
## 151             jss2 ~~ jss12  1.037 -0.197  -0.197   -0.101   -0.101
## 152             jss2 ~~ jss13  1.148  0.179   0.179    0.131    0.131
## 153             jss2 ~~ jss14  0.556 -0.147  -0.147   -0.089   -0.089
## 154             jss2 ~~  jss4  1.697  0.247   0.247    0.125    0.125
## 155             jss2 ~~  jss5  2.862 -0.311  -0.311   -0.368   -0.368
## 156             jss7 ~~ jss12  0.000 -0.005  -0.005   -0.002   -0.002
## 157             jss7 ~~ jss13  4.299 -0.407  -0.407   -0.259   -0.259
## 158             jss7 ~~ jss14  7.992  0.654   0.654    0.342    0.342
## 159             jss7 ~~  jss4  1.842 -0.299  -0.299   -0.131   -0.131
## 160             jss7 ~~  jss5  0.151 -0.083  -0.083   -0.085   -0.085
## 161            jss12 ~~ jss13  3.154  0.306   0.306    0.190    0.190
## 162            jss12 ~~ jss14  0.304 -0.113  -0.113   -0.058   -0.058
## 163            jss12 ~~  jss4  0.820  0.193   0.193    0.082    0.082
## 164            jss12 ~~  jss5  3.480 -0.381  -0.381   -0.382   -0.382
## 165            jss13 ~~ jss14  1.918 -0.257  -0.257   -0.187   -0.187
## 166            jss13 ~~  jss4  1.767 -0.220  -0.220   -0.134   -0.134
## 167            jss13 ~~  jss5  5.959  0.395   0.395    0.567    0.567
## 168            jss14 ~~  jss4  0.743  0.171   0.171    0.086    0.086
## 169            jss14 ~~  jss5  0.234  0.094   0.094    0.111    0.111

Možemo ih sortirati po veličini i ograničiti na neki manji broj

modindices(fit.3F, sort. = TRUE, maximum.number = 10) 
##                  lhs op   rhs     mi    epc sepc.lv sepc.all sepc.nox
## 116             jss9 ~~ jss10 51.670  0.774   0.774    0.853    0.853
## 61    organizational =~  jss8 18.853  0.654   0.920    0.518    0.518
## 100             jss6 ~~ jss12 17.617 -0.694  -0.694   -0.396   -0.396
## 135            jss15 ~~ jss16 14.458  0.463   0.463    0.450    0.450
## 127            jss10 ~~ jss16 13.516 -0.390  -0.390   -0.412   -0.412
## 70  salary_promotion =~  jss8 12.931  0.582   0.580    0.327    0.327
## 118             jss9 ~~ jss16 11.296 -0.404  -0.404   -0.338   -0.338
## 117             jss9 ~~ jss15 11.192 -0.412  -0.412   -0.418   -0.418
## 112             jss8 ~~ jss13 10.578  0.530   0.530    0.318    0.318
## 115             jss8 ~~  jss5  8.812  0.609   0.609    0.592    0.592

Mogu se uključiti i kao deo “običnog” ispisa

summary(fit.3F, header=TRUE, fit.measures=TRUE, standardized=TRUE, modindices=TRUE)
## lavaan 0.6-9 ended normally after 68 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        45
##                                                       
##   Number of observations                           139
##   Number of missing patterns                        16
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               221.875
##   Degrees of freedom                                74
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               959.792
##   Degrees of freedom                                91
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.830
##   Tucker-Lewis Index (TLI)                       0.791
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3331.241
##   Loglikelihood unrestricted model (H1)      -3219.500
##                                                       
##   Akaike (AIC)                                6752.483
##   Bayesian (BIC)                              6884.534
##   Sample-size adjusted Bayesian (BIC)         6742.165
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.120
##   90 Percent confidence interval - lower         0.102
##   90 Percent confidence interval - upper         0.139
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.078
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                       Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   intrinsic =~                                                             
##     jss1                 1.000                               0.625    0.590
##     jss6                 1.889    0.301    6.273    0.000    1.180    0.715
##     jss8                 1.330    0.291    4.567    0.000    0.831    0.468
##     jss9                 1.786    0.290    6.166    0.000    1.115    0.722
##     jss10                1.994    0.300    6.651    0.000    1.246    0.827
##     jss15                2.183    0.327    6.671    0.000    1.364    0.829
##     jss16                1.535    0.260    5.898    0.000    0.959    0.651
##   organizational =~                                                        
##     jss2                 1.000                               1.406    0.738
##     jss7                 1.185    0.143    8.286    0.000    1.667    0.748
##     jss12                0.737    0.119    6.181    0.000    1.037    0.564
##     jss13                1.019    0.113    9.045    0.000    1.433    0.804
##     jss14                1.175    0.135    8.683    0.000    1.653    0.788
##   salary_promotion =~                                                      
##     jss4                 1.000                               0.998    0.543
##     jss5                 1.762    0.508    3.467    0.001    1.757    0.937
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   intrinsic ~~                                                           
##     organizational     0.578    0.131    4.416    0.000    0.657    0.657
##     salary_promotn     0.243    0.098    2.487    0.013    0.390    0.390
##   organizational ~~                                                      
##     salary_promotn     0.690    0.245    2.814    0.005    0.492    0.492
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .jss1              5.892    0.091   64.538    0.000    5.892    5.568
##    .jss6              5.249    0.141   37.214    0.000    5.249    3.181
##    .jss8              4.439    0.151   29.367    0.000    4.439    2.500
##    .jss9              5.446    0.132   41.110    0.000    5.446    3.522
##    .jss10             5.495    0.129   42.668    0.000    5.495    3.646
##    .jss15             5.285    0.146   36.157    0.000    5.285    3.211
##    .jss16             5.419    0.127   42.834    0.000    5.419    3.681
##    .jss2              5.101    0.162   31.449    0.000    5.101    2.677
##    .jss7              4.282    0.190   22.519    0.000    4.282    1.921
##    .jss12             4.271    0.157   27.129    0.000    4.271    2.322
##    .jss13             4.777    0.152   31.466    0.000    4.777    2.679
##    .jss14             4.302    0.179   24.055    0.000    4.302    2.051
##    .jss4              4.743    0.157   30.256    0.000    4.743    2.582
##    .jss5              2.861    0.161   17.790    0.000    2.861    1.525
##     intrinsic         0.000                               0.000    0.000
##     organizational    0.000                               0.000    0.000
##     salary_promotn    0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .jss1              0.730    0.096    7.584    0.000    0.730    0.652
##    .jss6              1.331    0.191    6.982    0.000    1.331    0.489
##    .jss8              2.462    0.309    7.957    0.000    2.462    0.781
##    .jss9              1.146    0.180    6.370    0.000    1.146    0.479
##    .jss10             0.720    0.139    5.185    0.000    0.720    0.317
##    .jss15             0.849    0.162    5.248    0.000    0.849    0.313
##    .jss16             1.248    0.178    7.024    0.000    1.248    0.576
##    .jss2              1.652    0.241    6.867    0.000    1.652    0.455
##    .jss7              2.193    0.331    6.617    0.000    2.193    0.441
##    .jss12             2.309    0.300    7.691    0.000    2.309    0.682
##    .jss13             1.126    0.189    5.950    0.000    1.126    0.354
##    .jss14             1.666    0.268    6.205    0.000    1.666    0.379
##    .jss4              2.378    0.386    6.166    0.000    2.378    0.705
##    .jss5              0.431    0.803    0.536    0.592    0.431    0.122
##     intrinsic         0.390    0.112    3.470    0.001    1.000    1.000
##     organizational    1.978    0.412    4.800    0.000    1.000    1.000
##     salary_promotn    0.995    0.387    2.574    0.010    1.000    1.000
## 
## Modification Indices:
## 
##                  lhs op   rhs     mi    epc sepc.lv sepc.all sepc.nox
## 52         intrinsic =~  jss2  0.629  0.244   0.152    0.080    0.080
## 53         intrinsic =~  jss7  0.223 -0.169  -0.106   -0.047   -0.047
## 54         intrinsic =~ jss12  0.141  0.126   0.079    0.043    0.043
## 55         intrinsic =~ jss13  0.153  0.108   0.067    0.038    0.038
## 56         intrinsic =~ jss14  0.841 -0.301  -0.188   -0.090   -0.090
## 57         intrinsic =~  jss4  0.007  0.034   0.021    0.012    0.012
## 58         intrinsic =~  jss5  0.007 -0.060  -0.037   -0.020   -0.020
## 59    organizational =~  jss1  2.733 -0.141  -0.198   -0.187   -0.187
## 60    organizational =~  jss6  0.438 -0.079  -0.111   -0.067   -0.067
## 61    organizational =~  jss8 18.853  0.654   0.920    0.518    0.518
## 62    organizational =~  jss9  2.882 -0.189  -0.266   -0.172   -0.172
## 63    organizational =~ jss10  0.446 -0.066  -0.092   -0.061   -0.061
## 64    organizational =~ jss15  4.470  0.240   0.338    0.205    0.205
## 65    organizational =~ jss16  0.378 -0.069  -0.098   -0.066   -0.066
## 66    organizational =~  jss4  0.007 -0.053  -0.074   -0.040   -0.040
## 67    organizational =~  jss5  0.007  0.093   0.131    0.070    0.070
## 68  salary_promotion =~  jss1  1.152 -0.098  -0.098   -0.092   -0.092
## 69  salary_promotion =~  jss6  4.973  0.284   0.283    0.172    0.172
## 70  salary_promotion =~  jss8 12.931  0.582   0.580    0.327    0.327
## 71  salary_promotion =~  jss9  8.158 -0.339  -0.338   -0.219   -0.219
## 72  salary_promotion =~ jss10  3.015 -0.179  -0.179   -0.119   -0.119
## 73  salary_promotion =~ jss15  0.248  0.060   0.060    0.036    0.036
## 74  salary_promotion =~ jss16  1.695  0.157   0.157    0.107    0.107
## 75  salary_promotion =~  jss2  1.040 -0.160  -0.160   -0.084   -0.084
## 76  salary_promotion =~  jss7  1.747 -0.242  -0.241   -0.108   -0.108
## 77  salary_promotion =~ jss12  2.238 -0.260  -0.259   -0.141   -0.141
## 78  salary_promotion =~ jss13  3.854  0.273   0.273    0.153    0.153
## 79  salary_promotion =~ jss14  0.994  0.166   0.165    0.079    0.079
## 80              jss1 ~~  jss6  0.042 -0.020  -0.020   -0.020   -0.020
## 81              jss1 ~~  jss8  1.196 -0.134  -0.134   -0.100   -0.100
## 82              jss1 ~~  jss9  2.025  0.128   0.128    0.140    0.140
## 83              jss1 ~~ jss10  0.660 -0.064  -0.064   -0.088   -0.088
## 84              jss1 ~~ jss15  0.110 -0.030  -0.030   -0.038   -0.038
## 85              jss1 ~~ jss16  6.610  0.235   0.235    0.246    0.246
## 86              jss1 ~~  jss2  0.074  0.029   0.029    0.026    0.026
## 87              jss1 ~~  jss7  2.466 -0.193  -0.193   -0.153   -0.153
## 88              jss1 ~~ jss12  1.560  0.150   0.150    0.115    0.115
## 89              jss1 ~~ jss13  1.077 -0.095  -0.095   -0.105   -0.105
## 90              jss1 ~~ jss14  0.020  0.016   0.016    0.014    0.014
## 91              jss1 ~~  jss4  4.268  0.249   0.249    0.189    0.189
## 92              jss1 ~~  jss5  2.750 -0.192  -0.192   -0.342   -0.342
## 93              jss6 ~~  jss8  5.860  0.413   0.413    0.228    0.228
## 94              jss6 ~~  jss9  0.175 -0.054  -0.054   -0.043   -0.043
## 95              jss6 ~~ jss10  2.101 -0.167  -0.167   -0.171   -0.171
## 96              jss6 ~~ jss15  0.434 -0.087  -0.087   -0.082   -0.082
## 97              jss6 ~~ jss16  5.290  0.296   0.296    0.230    0.230
## 98              jss6 ~~  jss2  0.353  0.087   0.087    0.059    0.059
## 99              jss6 ~~  jss7  0.788 -0.151  -0.151   -0.088   -0.088
## 100             jss6 ~~ jss12 17.617 -0.694  -0.694   -0.396   -0.396
## 101             jss6 ~~ jss13  1.616  0.161   0.161    0.132    0.132
## 102             jss6 ~~ jss14  0.056 -0.036  -0.036   -0.024   -0.024
## 103             jss6 ~~  jss4  1.100 -0.175  -0.175   -0.098   -0.098
## 104             jss6 ~~  jss5  8.464  0.467   0.467    0.617    0.617
## 105             jss8 ~~  jss9  3.427 -0.294  -0.294   -0.175   -0.175
## 106             jss8 ~~ jss10  2.102 -0.200  -0.200   -0.150   -0.150
## 107             jss8 ~~ jss15  0.481 -0.111  -0.111   -0.077   -0.077
## 108             jss8 ~~ jss16  0.742 -0.140  -0.140   -0.080   -0.080
## 109             jss8 ~~  jss2  2.408 -0.292  -0.292   -0.145   -0.145
## 110             jss8 ~~  jss7  0.139  0.082   0.082    0.035    0.035
## 111             jss8 ~~ jss12  0.384 -0.132  -0.132   -0.055   -0.055
## 112             jss8 ~~ jss13 10.578  0.530   0.530    0.318    0.318
## 113             jss8 ~~ jss14  1.901  0.270   0.270    0.133    0.133
## 114             jss8 ~~  jss4  2.287 -0.325  -0.325   -0.134   -0.134
## 115             jss8 ~~  jss5  8.812  0.609   0.609    0.592    0.592
## 116             jss9 ~~ jss10 51.670  0.774   0.774    0.853    0.853
## 117             jss9 ~~ jss15 11.192 -0.412  -0.412   -0.418   -0.418
## 118             jss9 ~~ jss16 11.296 -0.404  -0.404   -0.338   -0.338
## 119             jss9 ~~  jss2  0.005 -0.010  -0.010   -0.007   -0.007
## 120             jss9 ~~  jss7  0.878  0.148   0.148    0.094    0.094
## 121             jss9 ~~ jss12  5.435  0.359   0.359    0.221    0.221
## 122             jss9 ~~ jss13  5.799 -0.284  -0.284   -0.250   -0.250
## 123             jss9 ~~ jss14  0.107 -0.046  -0.046   -0.034   -0.034
## 124             jss9 ~~  jss4  2.580 -0.250  -0.250   -0.151   -0.151
## 125             jss9 ~~  jss5  1.830 -0.203  -0.203   -0.288   -0.288
## 126            jss10 ~~ jss15  0.080 -0.033  -0.033   -0.042   -0.042
## 127            jss10 ~~ jss16 13.516 -0.390  -0.390   -0.412   -0.412
## 128            jss10 ~~  jss2  0.032  0.021   0.021    0.019    0.019
## 129            jss10 ~~  jss7  1.189  0.147   0.147    0.117    0.117
## 130            jss10 ~~ jss12  2.058  0.187   0.187    0.145    0.145
## 131            jss10 ~~ jss13  0.038 -0.020  -0.020   -0.022   -0.022
## 132            jss10 ~~ jss14  3.231 -0.217  -0.217   -0.198   -0.198
## 133            jss10 ~~  jss4  3.441 -0.245  -0.245   -0.187   -0.187
## 134            jss10 ~~  jss5  0.182 -0.055  -0.055   -0.099   -0.099
## 135            jss15 ~~ jss16 14.458  0.463   0.463    0.450    0.450
## 136            jss15 ~~  jss2  0.452  0.091   0.091    0.077    0.077
## 137            jss15 ~~  jss7  0.324 -0.090  -0.090   -0.066   -0.066
## 138            jss15 ~~ jss12  0.000  0.002   0.002    0.001    0.001
## 139            jss15 ~~ jss13  2.854  0.199   0.199    0.204    0.204
## 140            jss15 ~~ jss14  0.043  0.029   0.029    0.025    0.025
## 141            jss15 ~~  jss4  3.266  0.279   0.279    0.196    0.196
## 142            jss15 ~~  jss5  1.308 -0.171  -0.171   -0.283   -0.283
## 143            jss16 ~~  jss2  0.012  0.015   0.015    0.011    0.011
## 144            jss16 ~~  jss7  0.078 -0.045  -0.045   -0.027   -0.027
## 145            jss16 ~~ jss12  0.002 -0.006  -0.006   -0.004   -0.004
## 146            jss16 ~~ jss13  3.095 -0.213  -0.213   -0.180   -0.180
## 147            jss16 ~~ jss14  0.664  0.119   0.119    0.082    0.082
## 148            jss16 ~~  jss4  7.321  0.432   0.432    0.251    0.251
## 149            jss16 ~~  jss5  0.001 -0.005  -0.005   -0.007   -0.007
## 150             jss2 ~~  jss7  0.041  0.043   0.043    0.023    0.023
## 151             jss2 ~~ jss12  1.037 -0.197  -0.197   -0.101   -0.101
## 152             jss2 ~~ jss13  1.148  0.179   0.179    0.131    0.131
## 153             jss2 ~~ jss14  0.556 -0.147  -0.147   -0.089   -0.089
## 154             jss2 ~~  jss4  1.697  0.247   0.247    0.125    0.125
## 155             jss2 ~~  jss5  2.862 -0.311  -0.311   -0.368   -0.368
## 156             jss7 ~~ jss12  0.000 -0.005  -0.005   -0.002   -0.002
## 157             jss7 ~~ jss13  4.299 -0.407  -0.407   -0.259   -0.259
## 158             jss7 ~~ jss14  7.992  0.654   0.654    0.342    0.342
## 159             jss7 ~~  jss4  1.842 -0.299  -0.299   -0.131   -0.131
## 160             jss7 ~~  jss5  0.151 -0.083  -0.083   -0.085   -0.085
## 161            jss12 ~~ jss13  3.154  0.306   0.306    0.190    0.190
## 162            jss12 ~~ jss14  0.304 -0.113  -0.113   -0.058   -0.058
## 163            jss12 ~~  jss4  0.820  0.193   0.193    0.082    0.082
## 164            jss12 ~~  jss5  3.480 -0.381  -0.381   -0.382   -0.382
## 165            jss13 ~~ jss14  1.918 -0.257  -0.257   -0.187   -0.187
## 166            jss13 ~~  jss4  1.767 -0.220  -0.220   -0.134   -0.134
## 167            jss13 ~~  jss5  5.959  0.395   0.395    0.567    0.567
## 168            jss14 ~~  jss4  0.743  0.171   0.171    0.086    0.086
## 169            jss14 ~~  jss5  0.234  0.094   0.094    0.111    0.111

Alternativni dvofaktorski model

KFA.2Fmodel <- ' intrinsic =~ jss1 + jss6 + jss8 + jss9 + jss10 + jss15 + jss16
                  organizational =~ jss2 + jss7 + jss12 + jss13 + jss14 + jss4 + jss5 '
fit.2F <- cfa(KFA.2Fmodel, data=KFA_ds, missing="ML", likelihood = "wishart")
summary(fit.2F, fit.measures=TRUE, standardized=TRUE)
## lavaan 0.6-9 ended normally after 58 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        43
##                                                       
##   Number of observations                           139
##   Number of missing patterns                        16
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               251.522
##   Degrees of freedom                                76
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               959.792
##   Degrees of freedom                                91
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.798
##   Tucker-Lewis Index (TLI)                       0.758
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3346.172
##   Loglikelihood unrestricted model (H1)      -3219.500
##                                                       
##   Akaike (AIC)                                6778.345
##   Bayesian (BIC)                              6904.527
##   Sample-size adjusted Bayesian (BIC)         6768.485
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.129
##   90 Percent confidence interval - lower         0.112
##   90 Percent confidence interval - upper         0.147
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.086
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   intrinsic =~                                                           
##     jss1               1.000                               0.626    0.591
##     jss6               1.877    0.299    6.275    0.000    1.175    0.712
##     jss8               1.319    0.290    4.556    0.000    0.826    0.465
##     jss9               1.789    0.289    6.192    0.000    1.120    0.724
##     jss10              1.996    0.299    6.672    0.000    1.249    0.829
##     jss15              2.180    0.326    6.685    0.000    1.365    0.829
##     jss16              1.528    0.259    5.904    0.000    0.956    0.650
##   organizational =~                                                      
##     jss2               1.000                               1.407    0.739
##     jss7               1.170    0.142    8.239    0.000    1.646    0.738
##     jss12              0.733    0.119    6.160    0.000    1.031    0.561
##     jss13              1.018    0.112    9.077    0.000    1.432    0.803
##     jss14              1.175    0.135    8.713    0.000    1.653    0.788
##     jss4               0.397    0.119    3.335    0.001    0.559    0.304
##     jss5               0.640    0.122    5.226    0.000    0.900    0.482
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   intrinsic ~~                                                          
##     organizational    0.585    0.132    4.442    0.000    0.664    0.664
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .jss1              5.892    0.091   64.524    0.000    5.892    5.566
##    .jss6              5.249    0.141   37.210    0.000    5.249    3.180
##    .jss8              4.439    0.151   29.367    0.000    4.439    2.500
##    .jss9              5.445    0.133   41.094    0.000    5.445    3.521
##    .jss10             5.495    0.129   42.645    0.000    5.495    3.644
##    .jss15             5.286    0.146   36.162    0.000    5.286    3.211
##    .jss16             5.419    0.127   42.838    0.000    5.419    3.682
##    .jss2              5.101    0.162   31.449    0.000    5.101    2.677
##    .jss7              4.282    0.190   22.517    0.000    4.282    1.920
##    .jss12             4.270    0.157   27.123    0.000    4.270    2.321
##    .jss13             4.777    0.152   31.466    0.000    4.777    2.679
##    .jss14             4.301    0.179   24.033    0.000    4.301    2.049
##    .jss4              4.743    0.157   30.217    0.000    4.743    2.581
##    .jss5              2.867    0.160   17.876    0.000    2.867    1.535
##     intrinsic         0.000                               0.000    0.000
##     organizational    0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .jss1              0.728    0.096    7.582    0.000    0.728    0.650
##    .jss6              1.343    0.191    7.035    0.000    1.343    0.493
##    .jss8              2.471    0.310    7.968    0.000    2.471    0.784
##    .jss9              1.137    0.178    6.370    0.000    1.137    0.475
##    .jss10             0.712    0.137    5.182    0.000    0.712    0.313
##    .jss15             0.848    0.162    5.224    0.000    0.848    0.313
##    .jss16             1.252    0.178    7.043    0.000    1.252    0.578
##    .jss2              1.650    0.239    6.894    0.000    1.650    0.454
##    .jss7              2.262    0.335    6.760    0.000    2.262    0.455
##    .jss12             2.321    0.301    7.710    0.000    2.321    0.686
##    .jss13             1.129    0.186    6.059    0.000    1.129    0.355
##    .jss14             1.671    0.267    6.262    0.000    1.671    0.379
##    .jss4              3.065    0.376    8.150    0.000    3.065    0.908
##    .jss5              2.677    0.341    7.847    0.000    2.677    0.768
##     intrinsic         0.392    0.113    3.478    0.001    1.000    1.000
##     organizational    1.981    0.412    4.813    0.000    1.000    1.000

Poređenje modela - anova() funkcija

anova(fit.2F,fit.3F)
## Chi-Squared Difference Test
## 
##        Df    AIC    BIC  Chisq Chisq diff Df diff Pr(>Chisq)    
## fit.3F 74 6752.5 6884.5 221.88                                  
## fit.2F 76 6778.3 6904.5 251.52     29.647       2  3.649e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Grafički prikaz modela

# install.packages("semPlot")
library(semPlot)


semPaths(fit.3F, what = "path", whatLabels = "std", layout = "tree2")

semPaths(fit.2F, what = "path", whatLabels = "std", layout = "tree2")

semPaths(fit.2F, what = "path", whatLabels = "std", layout = "spring")