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 Creating a Confi rmatory Factor 

Analysis Model 

 This chapter will focus on creating and specifying a confi rmatory 

factor analysis (CFA) model, beginning with the role of theory and 

prior research in CFA. We will then discuss how a CFA model is specifi ed, 

examining the role of observed and latent variables and model param­

eters, followed by a discussion of the importance of model identifi cation, 

scaling latent variables, and estimation methods. We will end this chapter 

with a detailed example of testing a CFA model. 

  Specifying the Model  

 Theory and/or prior research are crucial to specifying a CFA model to 

be tested. As noted in Chapter 1, the one­factor solution of the Rosen­

berg Self­Esteem Scale was tested based on the conceptualization of self­

 esteem as a global (i.e., unitary) factor, although the existing exploratory 

factor analysis (EFA) work found two factors. Early in the process of 

measurement development, researchers may rely entirely on theory to 

develop a CFA model. However, as a measure is used over time, CFA can 

be used to replicate EFA or other analyses that have been conducted on 
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the measure. In the Professional Opinion Scale (POS) example discussed 

in Chapter 1, Abbott’s (2003) initial CFA was based both on underlying 

theory and an earlier EFA, whereas the Greeno et al. (2007) CFA was 

based on Abbott’s (2003) earlier CFA work. Confi rmatory factor analysis 

may not be an appropriate analysis to use if there is no strong under­

lying foundation on which to base the model, and more preliminary 

work, such as EFA or theory development, may be needed. This chapter 

includes many terms that are used in CFA, which will be defi ned here 

and in the Glossary. See Figure 2.1 for a basic CFA model with variables 

and parameters labeled. 

  Observed Variables  

 As discussed in Chapter 1, observed variables are those items that are 

directly observed, such as a response to a question. In CFA models, ob­

served variables are represented by rectangles. 
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Figure 2.1 CFA Model With Parameters Labeled
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  Latent Variables  

 Latent variables are the underlying, unobserved constructs of interest. 

Ovals are used to represent latent variables in CFA models (sometimes 

circles are also used, but we will use ovals in this book). There are two 

types of latent variables: exogenous and endogenous. Exogenous vari­

ables are not caused by other variables in the model; they are similar to 

independent variables (IV), X, or predictors in regression analyses. En­

dogenous variables are–at least theoretically–caused by other variables, 

and in this sense they are similar to dependent variables (DV), Y, or out­

come variables in regression analyses. In complex models, some variables 

may have both exogenous and endogenous functions. 

  CFA Model Parameters  

 Model parameters are the characteristics of the population that will be 

estimated and tested in the CFA. Relationships among observed and 

 latent variables are indicated in CFA models by arrows going from the 

latent variables to the observed variables. The direction from the latent to 

the observed variable indicates the expectation that the underlying con­

struct (e.g., depression) causes the observed variables (e.g., symptoms of 

unhappiness, feeling blue, changes in appetite, etc.). The factor loadings 

are the regression coeffi cients (i.e., slopes) for predicting the indicators 

from the latent factor. In general, the higher the factor loading the better, 

and typically loadings below 0.30 are not interpreted. As general rules of 

thumb, loadings above 0.71 are excellent, 0.63 very good, 0.55 good, 0.45 

fair, and 0.32 poor (Tabachnick & Fidell, 2007). These rules of thumb are 

based on factor analyses, where factor loadings are correlations between 

the variable and factor, so squaring the loading yields a variance account­

ed for. Note that a loading of 0.71 squared would be 50% variance ac­

counted for, whereas 0.32 squared would be 10% variance accounted for. 

In CFA, the interpretation of the factor loadings or regression coeffi cients 

is a little more complex if there is more than one latent variable in the 

model, but this basic interpretation will work for our purposes. 

 Whereas each indicator is believed to be caused by the latent fac­

tor, there may also be some unique variance in an indicator that is not 
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 accounted for by the latent factor(s). This unique variance is also known 

as measurement error, error variance, or indicator unreliability (see E1 to 

E6 in Figure 2.1). 

 Other parameters in a CFA model include factor variance, which is 

the variance for a factor in the sample data (in the unstandardized so­

lution), and error covariances, which are correlated errors demonstrat­

ing that the indicators are related because of something other than the 

shared infl uence of the latent factor. Correlated errors could result from 

method effects (i.e., common measurement method such as self­report) 

or similar wording of items (e.g., positive or negative phrasing). 

 The relationship between two factors, or latent variables, in the model 

is a factor correlation in the completely standardized solution or a fac­

tor covariance in unstandardized solutions. Factor correlations represent 

the completely standardized solution in the same way that a Pearson’s 

correlation is the “standardized” relationship between two variables (i.e., 

ranges from –1 to +1 and is unit­free—it does not include the original 

units of measurement). Similarly, factor covariances are unstandardized 

and include the original units of measurement just as variable covari­

ances retain information about the original units of measurement and 

can range from negative infi nity to positive infi nity. Factor covariances 

or correlations are shown in CFA models as two­headed arrows (usually 

curved) between two latent variables. 

 Identifi cation of the Model 

 Confi rmatory factor analysis models must be identifi ed to run the model 

and estimate the parameters. When a model is identifi ed, it is possible to 

fi nd unique estimates for each parameter with unknown values in the 

model, such as the factor loadings and correlations. For example, if we 

have an equation such as  a  +  b  = 44, there are an infi nite number of 

combinations of values of  a  and  b  that could be used to solve this equa­

tion, such as  a  = 3 and  b  = 41 or  a  = −8 and b  = 52. In this case, the 

model (or the equation) is underidentifi ed because there are not enough 

known  parameters to allow for a unique solution—in other words, there 
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are more unknowns ( a  and  b ) than there are knowns (44) (Kline, 2005; 

Raykov & Marcoulides, 2006). Models must have degrees of freedom ( df  ) 

greater than 0 (meaning we have more known than unknown param­

eters), and all latent variables must be scaled (which will be discussed 

later in this chapter) for models to be identifi ed (Kline, 2005). When we 

meet these two conditions, the model can be solved and a unique set of 

parameters estimated. Models can be under­, just­, or overidentifi ed. 

 Underidentifi ed Models 

 Models are underidentifi ed when the number of freely estimated param­

eters (i.e., unknowns) in the model is greater than the number of knowns. 

Underidentifi ed models, such as the  a  +  b  = 44 example given earlier, 

cannot be solved because there are an infi nite number of parameter es­

timates that will produce a perfect fi t (Brown, 2006). In this situation we 

have negative  df , indicating that the model cannot reach a unique solu­

tion because too many things are left to vary relative to the number of 

things that are known. The number of unknowns can be reduced by fi x­

ing some of the parameters to specifi c values. For example, if we set  b  = 4 

in the aforementioned equation, then  a  can be solved because we know 

have more knowns ( b  and 44) than unknowns ( a ). 

 Just­Identifi ed Models  

 Models are just­identifi ed when the number of unknowns equals the 

number of knowns and  df  = 0. In this situation, there is one unique set 

of parameters that will perfectly fi t and reproduce the data. Although 

this may initially sound like a great idea (What could be wrong with a 

perfectly fi tting model?), in practice, perfectly fi tting models are not very 

informative because they do not allow for model testing. 

 Overidentifi ed Models 

 Models are overidentifi ed when the number of unknowns is smaller than 

the number of knowns and  df  are greater than 0. Our  a  +  b  = 44 example 



26 Confi rmatory Factor Analysis 

stops working here because it is too simplistic to illustrate overidentifi ed 

models, but Kline (2005) provides a nice example of how this works with 

sets of equations if you are interested in more information on identifi ­

cation of models. The difference between the number of knowns and 

unknowns is equal to the degrees of freedom ( df  ) for the model. When 

a model is overidentifi ed, goodness of fi t can be evaluated and it is pos­

sible to test how well the model reproduces the input variance covariance 

matrix (Brown, 2006). Because we are interested in obtaining fi t indices 

for CFA models, we want the models to be overidentifi ed. 

 Scaling Latent Variables 

 As stated earlier, in addition to having  df  greater than 0, the second 

condition for model identifi cation is that the latent variables have to 

be scaled. Scaling the latent variable creates one less unknown. Because 

latent variables are unobserved, they do not have a pre­defi ned unit of 

measurement; therefore, the researcher needs to set the unit of measure­

ment. There are two ways to do this. One option is to make it the same 

as that of one of the indicator variables. The second option is to set the 

variance equal to 1 for the latent variable. In general, the fi rst option is 

the more popular (Brown, 2006). Although these two options generally 

result in similar overall fi t, they do not always do so and it is important 

to realize that the option chosen for scaling the latent variable may in­

fl uence the standard errors and results of the CFA (Brown, 2006; Kline, 

2005). 

 Scaling the latent variable (or setting its unit of measurement) is 

a little like converting currency. Imagine that you are creating a latent 

variable for cost of living across the United States, United Kingdom, and 

France, and you have three indicators—one in U.S. dollars, one in British 

pounds, and the other in Euros. Dollars, pounds, and Euros all have dif­

ferent scales of measurement, but the latent variable can be scaled (using 

the aforementioned option 1) to any one of these. If scaled to U.S. dollars, 

the latent variable will be interpretable in terms of dollars. But, the latent 

variable could also be scaled to either pounds or Euros—whichever will 

be most interpretable and meaningful for the intended audience. 
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 Determining Whether a Model is Identifi ed 

 As discussed earlier, you will want your CFA models to be overidenti­

fi ed so that you can test the fi t of your model. Assuming that the la­

tent variables have been properly scaled, the issue that will determine 

whether a model is identifi ed is the number parameters to be esti mated 

(i.e., the unknowns) relative to the number of known parameters. 

There are several rules of thumb available for testing the identifi ca­

tion of models, such as the  t ­Rule and the Recursive Rule; however, 

these rules provide necessary but not suffi cient guidance (Reilly, 1995), 

meaning that meeting the rule is necessary for identifi cation, but the 

model may still be underidentifi ed because of other issues. Fortunately 

for our purposes, SEM software used to conduct CFA will automati­

cally test the identifi cation of the model and will provide a message if 

the model is under­ or just­identifi ed, which should be suffi cient for 

most situations. 

 Estimation Methods 

 “The objective of CFA is to obtain estimates for each parameter of the 

measurement model (i.e. factor loadings, factor variances and covarianc­

es, indicator error variances and possibly error covariances) that produce 

a predicted variance­covariance matrix (symbolized as  Σ ) that represents 

the sample variance­covariance matrix (symbolized as  S ) as closely as 

possible” (Brown, 2006, p. 72). In other words, in CFA we are testing 

whether the model fi ts the data. There are multiple estimation methods 

available for testing the fi t of an overidentifi ed model, and we briefl y 

 discuss several. The exact process of how the model is estimated using 

different estimation methods is beyond the scope of this book, but I will 

provide a general idea of how it works. Fitting a model is an iterative 

process that begins with an initial fi t, tests how well the model fi ts, adjusts 

the model, tests the fi t again, and so forth, until the model converges or 

fi ts well enough. This fi tting process is done by the software used and will 

generally occur in a “black box” (i.e., it will not be visible to you). 
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 This iterative fi tting process is similar to having a garment, such as 

a wedding dress or suit, fi tted. You begin with your best guess of what 

size should fi t, and then the tailor assesses the fi t and decides if adjust­

ments are needed. If needed, the adjustments are made and then the 

garment is tried on again. This process continues until some fi tting 

criteria are reached (i.e., the garment fi ts properly) or some external 

criteria (i.e., the wedding date) forces the process to stop. If the fi t­

ting criteria are reached, then the fi t is said to converge and we have a 

well­fi tting garment (or CFA model). But, if the fi tting criteria are not 

reached, we may be forced to accept a poorly fi tting garment (or CFA 

model) or to begin again with a new size or style (or a different CFA 

model). Just as there are multiple tailors available who will use slightly 

different fi tting criteria, there are also multiple estimation methods 

available for CFA—each with its own advantages and disadvantages. 

 Some of the estimation methods that you may see in the literature in­

clude maximum likelihood (ML), weighted least squares (WLS), general­

ized least squares (GLS), and unweighted least squares (ULS). Although 

GLS and ULS are available in Amos 7.0 and may appear in the literature, 

both are used with multivariate normal data (Kline, 2005), and if data are 

multivariate normal, then ML is a better estimation procedure to use, so 

we will not discuss GLS and ULS. For this introductory text on CFA, we 

will limit our discussion to the best of the common estimation methods 

that are available in Amos 7.0. 

 Maximum Likelihood 

 Maximum likelihood (ML) is the most commonly used estimation 

method. Maximum likelihood “aims to fi nd the parameter values that 

make the observed data most likely (or conversely maximize the likeli­

hood of the parameters given the data)” (Brown, 2006, p. 73). Maximum 

likelihood estimation is similar (but not identical) to the ordinary least 

squares criterion used in multiple regression (Kline, 2005). It has several 

desirable statistical properties:  (1)  it provides standard errors (SEs) for 

each parameter estimate, which are used to calculate  p ­values (levels of 
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signifi cance), and confi dence intervals, and  (2)  its fi tting function is used 

to calculate many goodness­of­fi t indices. 

 There are three key assumptions for ML estimation. First, this esti­

mation procedure requires large sample sizes (sample size requirements 

will be discussed in more detail in Chapter 3). Second, indicators need to 

have continuous levels of measurement (i.e., no dichotomous, ordinal, 

or categorical indicator variables). Third, ML requires multivariate nor­

mally distributed indicators (procedures for assessing normality will be 

discussed in Chapter 3). ML estimation is robust to moderate violations, 

although extreme non­normality results in several problems:  (1)  un­

derestimation of the SE, which infl ates Type I error;  (2)  poorly behaved 

(infl ated) χ2  tests of overall model fi t and underestimation of other fi t 

indices (e.g., TLI and CFI, which will be discussed further in Chapter 4); 

and (3)  incorrect parameter estimates. When there are severe violations 

of the assumptions, formulas are available for calculating robust SE esti­

mates and the chi­square statistic as long as there are no missing data (see 

Gold, Bentler, & Kim, 2003). Importantly, the effects of non­normality 

worsen with smaller sample sizes (Brown, 2006). In addition, when the 

violations of the underlying assumptions are extreme, ML is prone to 

Heywood cases (i.e., parameter estimates with out­of­range values), such 

as negative error variances. In addition, minor misspecifi cations of the 

model may result in “markedly distorted solutions” (Brown, 2006, p. 75). 

Therefore, ML should not be used if the assumptions are violated. 

 Other Estimation Methods 

 If the model includes one or more categorical indicator variables or if there 

is extreme non­normality, ML is not appropriate to use and there are sev­

eral alternative estimation methods available:  (1)  WLS, which is called as­

ymptotically distribution­free (ADF) in Amos 7.0;  (2)  robust weighted least 

squares (WLSMV); and  (3)  ULS (Brown, 2006). However, each of these 

estimation methods has limitations, as discussed below. For non­normal 

continuous indicators, ML with robust SE and χ2  (MLM) can be used. At 

this time, the Mplus program has the best options for handling categorical 

data because of the availability of the WLSMV estimator (Brown, 2006). 
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 Of the estimation methods that are broadly available, including in 

Amos, ADF “estimates the degree of both skew and kurtosis in the raw 

data” and therefore makes no assumptions about the distribution of 

the data (Kline, 2005, p. 196). Although this addresses the problem of 

non­normality in the data, a drawback of this approach is that it gener­

ally requires very large sample sizes of 200 to 500 for simple models and 

thousands of cases for complex models (Kline, 2005, p. 196). In addition 

to the sample size requirements, Brown (2006) notes that ADF or WLS 

does not perform well with categorical data, especially when samples are 

not suffi ciently large. 

 Gold et al. (2003) compared ML and ADF estimation methods for 

non­normal incomplete data and found that direct ML (the form of ML 

that can handle missing data, which is available in Amos and other soft­

ware packages) performs better than ADF with pairwise deletion, regard­

less of missing data mechanism (p. 73). Gold et al. (2003) concluded that 

ADF should not be used with missing data, and if there are missing 

data, even when there is non­normality, “ML methods are still preferable, 

although they should be used with robust standard errors and rescaled 

chi­square statistics” (p. 74). Savalei and Bentler (2005) also concluded 

that direct ML is generally recommended when there are missing data 

and non­normality. Missing data and normality will be discussed further 

in Chapter 3. 

 In Amos Graphics 7.0, the available estimation methods are ML, GLS, 

ULS, scale­free least squares, and ADF. Only ML can be used if there are 

missing data. If there are missing data and one of the other estimation 

methods is needed, then some form of data imputation needs to be done 

before the other estimation method can be used in Amos. Readers who 

are likely to have problematic data may want to consider using a software 

package other than Amos. 

 Testing a Confi rmatory Factor Analysis Model Example 

 In this section, we will use Amos 7.0 to test a CFA model using the 

Maslach Burnout Inventory (MBI; Maslach, Jackson, & Leiter, 1996). Brief 
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 instructions for using Amos 7.0 to conduct this analysis are provided in 

Appendix A. The data for this example are from a study of U.S. Air Force 

Family Advocacy Program (FAP) workers (Bean, Harrington, & Pintello, 

1998; Harrington, Bean, Pintello, & Mathews, 2001). The sample includes 

139 FAP workers and the response rate for the survey was 74%. Before 

continuing, it is important to note that this sample size is considered 

medium (Kline, 2005) for this analysis (although one can fi nd published 

CFA articles with similar and even smaller size samples). Therefore, it is 

offered only as an example data set that readers can play with, not one 

from which conclusions should be drawn. Ideally, the sample size would 

be larger, as will be discussed in Chapter 3. 

 Specifying the Model 

 The MBI was developed in the late 1970s by Maslach and Jackson to 

measure burnout in human service workers. It is considered the most 

widely accepted and often used self­report index of burnout in research 

studies and employee assessment. This 22­item self­report scale treats 

burnout as a continuous variable that can be divided into three com­

ponents: emotional exhaustion (EE), depersonalization (DP), and per­

sonal accomplishment (PA). Each item is measured on a seven­point 

Likert­type scale assessing the frequency of occurrence (ranging from 

0 = never to 6 = a few times a day). For EE and DP, higher scores indi­

cate higher levels of burnout, with higher levels of emotional exhaus­

tion and depersonalization, respectively. For PA, higher scores indicate 

lower levels of burnout and higher levels of personal accomplishment. 

Maslach suggests that each subscale be scored separately rather than 

as a composite because this provides the best representation of the 

multidimensional nature of burnout as a construct (Schaufeli & Van 

 Dierendonck, 1995). 

 As discussed earlier, specifying the model to be tested should be based 

on theory and prior research. There has been extensive work on the MBI, 

including a CFA on the three­factor MBI in a sample of child welfare 

workers (Drake & Yadama, 1995). There has also been extensive debate 
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about how the three factors are related to burnout, whether they are all 

components of burnout, or whether EE is really the indicator of burnout, 

with PA and DP being related but separate constructs. 

 Like Drake and Yadama (1995), we will begin by testing the three­

factor structure of the MBI as defi ned by Maslach et al. (1996). The 

observed variables for the model are the 22 items that participants re­

sponded to, and the latent variables are the three factors identifi ed by 

Maslach et al. (1996). The indicators for each latent variable were cho­

sen based on scoring instructions provided by Maslach and colleagues 

(1996). Because the three factors are believed to be related to each other, 

covariances (or correlations) among the latent variables are included 

in the model (shown as the two headed curved arrows in Figure 2.2 

below). 

 Identifi cation of the Model 

 The MBI CFA model is overidentifi ed with 206  df , which means that there 

are fewer parameters to be estimated than there are known parameters. 

Each latent variable is scaled, with the path coeffi cient for one observed 

variable being set to “1” for each latent variable. 

 Estimation Method 

 Maximum likelihood (ML) estimation was used for this model. The MBI 

observed variables can be treated as continuous and the data are approx­

imately normally distributed (data considerations will be discussed in 

Chapter 3), making ML a reasonable estimation method to use. It should 

be noted that the sample size for this example is smaller ( n  = 139) than 

desired for this or any other CFA estimation procedure, but these data are 

used for example purposes only. 

 Model Fit 

 All the observed variables are signifi cantly related to the latent variables and 

EE and DP are signifi cantly correlated as expected. However, contrary to 
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expectations, PA and DP are not correlated ( r  = − 0.127;  p  = 0.261), and PA 

and EE are not correlated ( r  = − 0.226;  p  = 0.056). Although the model test­

ed was based on a well­developed and tested measure, the model does not fi t 

as well as desired. We will discuss assessing model fi t in detail in Chapter 4. 
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 Model Respecifi cation 

 Drake and Yadama (1995) also found that the 22­item, three­factor MBI 

CFA did not fi t well. To respecify their model (respecifi cation will be 

discussed in more detail in Chapter 4, but briefl y to respecify means to 

revise), they examined intercorrelations among items and deleted two 

items (2 and 16) that were very similar in content and highly correlat­

ed with other items. Drake and Yadama (1995) also examined squared 

multiple correlations and dropped two items (4 and 21) with very low 

squared multiple correlations. Finally, modifi cation indices suggested 

that allowing the error terms to be correlated for items 5 and 15 on the 

DP scale and items 9 and 19 on the PA scale would improve model fi t; 

because both of these changes seemed reasonable, the error terms were 

allowed to covary. Drake and Yadama’s fi nal model fi t well and indicators 

loaded on latent variables as expected. 

 Using Drake and Yadama’s (1996) prior work as guidance, the MBI 

CFA was respecifi ed according to their fi nal model (i.e., 18 items, three fac­

tors, and adding two error covariances). Similarly to Drake and Yadama’s 

(1996) fi ndings, the respecifi ed model fi ts much better than the original 

22­item, three­factor model. Figure 2.2 shows the standardized output for 

the fi nal model. All regression weights in the model are signifi cant and in­

dicators load on the expected latent variables, EE and DP are signifi cantly 

correlated ( p  < 0.0005), and EE and PA are signifi cantly correlated (  p  = 

0.013); the correlation between PA and DP is nonsignifi cant ( p  = 0.193). 

 Conclusion 

 The respecifi ed model fi t the data adequately, supporting the modifi ed 

structure reported by Drake and Yadama (1995). The changes made to 

the model by Drake and Yadama (1995) were data­driven, and they noted 

that their fi ndings should be considered preliminary with further CFA 

work needed with other samples. The fi ndings in this example cautiously 

(because of the small sample size) suggest support for the 18­item model 

Drake and Yadama (1995) reported, rather than the original Maslach et al. 

(1996) 22­item model. 
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 Chapter Summary 

 This chapter focused on creating and specifying a CFA model, including 

the use of theory and prior research. Observed and latent variables, CFA 

model parameters, model identifi cation, and scaling the latent variables 

were defi ned, and conventions for drawing CFA models were presented. 

Estimation methods used in the CFA literature were briefl y discussed, 

and ML estimation was discussed in detail. Finally, a detailed example of 

a CFA on the MBI was presented. 

 Suggestions for Further Reading 

 See Arbuckle (2006) for much more information on using Amos 7.0 

Graphics. Byrne’s (1998, 2001a, 2006) books on structural equation 

modeling with LISREL, Amos, and EQS (respectively) provide a number 

of CFA examples using these software packages. Reilly (1995) provides 

instructions and examples using the Rank Rule to determine whether a 

CFA model will be identifi ed. Brown (2006) provides more information 

on how the estimation methods and fi tting functions work. See Drake 

and Yadama (1995) for more detail on how they conducted the CFA that 

was replicated in this chapter. See Gold, Bentler, and Kim (2003) and 

Savalei and Bentler (2005) for more information on the Monte Carlo 

studies they conducted to compare ML and ADF estimation methods 

with missing data and non­normality. 


