
C H A P T E R  

Multivariate Analysis 
of Variance and Covariance 

7.1 ~enera l  .purpose and Description 

Multivariate analysis of variance (MANOVA) is a generaiization of ANOVA to a situation in which 
there are several DVs. For example, suppose a researcher is interested in the effect of different types 
of treatments on several types of anxieties: test anxiety, anxiety in reaction to minor life stresses, and 
so-called free-floating anxiety. The IV is different treatment with three levels (desensitization, relax- 
ation training, and a waiting-list control). After random assignment of subjects to treatments and a 
subsequent period of treatment, subjects are measured for test anxiety, stress anxiety, and free- 
floating anxiety. Scores on all three measures for each subject serve as DVs. MANOVA is used to ask 
whether a combination of the three anxiety measures varies as a function of treatment. MANOVA is 
statistically identical to discriminant analysis, the subject of Chapter 9. The difference between the 
techniques is one of emphasis only. MANOVA emphasizes the mean differences and statistical sig- 
nificance of differences among groups. Discriminant analysis emphasizes prediction of group mem- 
bership and the dimensions on which groups differ. 

ANOVA tests whether mean differences among groups on a single DV are likely to have 
occurred by chance. MANOVA iests whether meax digerences 2mong groups on a combination of 
DVs are likely to have occurred by chance. In MANOVA, a new DV that maximizes group dift'erences 
is created from the set of DVs. The new DV is a linear combination of measured DVs, combined so as 
to separate the groups as much as possible. ANOVA is then performed on the newly created DV. As in 
ANOVA, hypotheses about means in MANOVA are tested by comparing variances-hence multi- 
variate analysis of variance. 

In factorial or more complicated MANOVA, a different linear combination of DVs is formed 
for each main effect and interaction. If gender of subject is added to the example as a second IV, one 
combination of the three DVs maximizes the separation of the three treatment groups, a second com- 
bination maximizes separation of women and men, and a third combination maximizes separation of 
the cells of the interaction. Further, if the treatment IV has more than two levels, the DVs can be 
recombined in yet other ways to maximize the separation of groups formed by comparisons.' 

MANOVA has a number of advantages over ANOVA. First, by measuring several DVs instead 
of only one, the researcher improves the chance of discovering what i t  is that changes as a result of 
different treatments and their interactions. For instance, desensitization may have an advantage over 

'The linear combinations themselves are of interest in discriminant analys~s (Chapter 9). 
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relaxation tralnlng or wa~trng-llst control. but only on teat anxiety: the effect is micfing if test anwetv 
isn't one of your DVs. A second advantage of bIANOVA over a \erres of ANOVAs when there are fev- 
era1 DVs is protection against inflated Type I error due to mult~ple tests of (likely) correlated DVs. 

Another advantage of MANOVA is that, under certain, probably rare conditions, it may reveal 
differences not shown in separate ANOVAs. Such a situation is shown in Figure 7.1 for a one-way 
design with two levels. In this figure, the axes represent frequency distributions for each of two DVs, 
Yl and Y,. Notice that from the point of view of either axis, the distributions are sufficiently over- 
lapping that a mean difference might not be found in ANOVA. The ellipses in the quadrant, however, 
represent the distributions of Yl and Y2 for each group separately. When responses to two DVs are 
considered in combination, group differences become apparent. Thus, MANOVA, which considers 
DVs in combination, may occasionally be more powerful than separate ANOVAs. 

But there are no free lunches in statistics, either. MANOVA is a substantially more compli- 
cated analysis than ANOVA. There are several important assumptions to consider, and there is often 
some ambiguity in interpretation of the effects of IVs on any single DV. Further, the situations in 
which MANOVA is more powerful than ANOVA are quite limited; often MANOVA is considerably 
less powerful than ANOVA, particularly in finding significant group differences for a particular DV. 
Thus, our recommendation is te think very carefdly abmt the need for more than one DV in iight of 
the added complexity and ambiguity of analysis and the likelihood that multiple DVs may be redun- 
dant (see also Section 7.5.3). Even moderately correlated DVs diminish the power of MANOVA. 
Figure 7.2 shows a set of hypothetical relationships between a single IV and four DVs. DV1 is highly 
related to the IV and shares some variance with DV2 and DV3. DV2 is related to both DV1 and DV3 
and shares very little unique variance with the IV, although by itself in a univariate ANOVA might be 
related to the IV. DV3 is somewhat related to the IV, but also to all of the other DVs. DV4 is h i g h l y ,  

FIGURE 7.1 Advantage of MANOVA, which 
combines DVs, over ANOVA. Each axis 

represents a DV; frequency distributions 
projected to axes show considerable overlap, 
while ellipses, showing DVs in combination, 

do not. 
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FIGURE 7.2 Hypothetical relationships 
among a single IV and four DVs. 

related to the iV and shares oniy a little bii of variance tirith DV3. Thus, DV2 is completely redun- 
dant with the other DVs, and DV3 adds only a bit of unique variance to the set. However, DV2 would 
be useful as a CV if that use made sense conceptually. DV2 reduces the total variance in DV1 and 
DV2, and most of the variance reduced is not related to the IV. Therefore, DV2 reduces the error vari- 
ance in DV 1 and DV3 (the variance that is not overlapping with the IV). 

Multivariate analysis of covariance (MANCOVA) is the multivariate extension of ANCOVA 
(Chapter 6). MANCOVA asks if there are statistically significant mean differences among groups 
after adjusting the newly created DV for differences on one or more covariates. For the example, sup- 
pose that before treatment subjects are pretested on test anxiety, minor stress anxiety, and free- 
floating anxiety. When pretest scores are used as covariates, MANCOVA asks if mean anxiety on the 
composite score differs in the three treatment groups, after adjusting for preexisting differences in 
the three types of anxieties. 

MANCOVA is useful in the same ways as ANCOVA. First, in experimental work, it serves as 
a neise-reducing device where variance associated with the covariate(s) is removed from error vari- 
ance; smaller error variance provides a more powerful test of mean differences among groups. Sec- 
ond, in noncxpcrimcn:al wctrk, MAPJCOVA provides statistical matching of groups when random 
assignment to groups is not possible. Prior differences among groups are accounted for by adjusting 
DVs as if all subjects scored the same on the covariate(s). (But review Chapter 6 for a discussion of 
the logical difficulties of using covariates this way.) 

ANCOVA is used after MANOVA (or MANCOVA) in Roy-Bargmann stepdown analysis 
where the goal is to assess the contributions of the various DVs to a significant effect. One asks 
whether, after adjusting for differences on higher-priority DVs serving as covariates, there is any sig- 
nificant mean difference among groups on a lower-priority DV. That is, does a lower-priority DV 
provide additional separation of groups beyond that of the DVs already used? In this sense, 
ANCOVA is used as a tool in interpreting MANOVA results. 

Although computing procedures and programs for MANOVA and MANCOVA are not as well 
developed as for ANOVA and ANCOVA, there is in theory no limit to the generalization of the 
model, despite complications that arise. There is no reason why all types of designs-one-way, fac- 
torial, repeated measures, nonorthogonal, and so on--cannot be extended to research with several 
DVs. Questions of effect size, specific comparisons, and trend analysis are equally interesting with 
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MANOVA. In addition. there i b  the question of importance c.f DV\-that i \ ,  ~vhich DV\ ;Ire affected 
by the IVs and which are not. 

MANOVA developed in the tradition of ANOVA. Traditionally, MANOVA was applied to 
experimental situations where all, or at least some, IVs are manipulated and subjects are randomly 
assigned to groups, usually with equal cell sizes. Discriminant analysis (Chapter 9) developed in the. 
context of nonexperimental research where groups are formed naturally and are not usually the same 
size. MANOVA asks if mean differences among groups on the combined DV are larger than 
expected by chance; discriminant analysis asks if there is some combination of variables that reliably 
separates groups. But there is no mathematical distinction between MANOVA and discriminant 
analysis. At a practical level, computer prograrris for discriminant analysis are more informative but 
are also, for the most part, limited to one-way designs. Therefore, analysis of one-way MANOVA is 
deferred to Chapter 9 and the present chapter covers factorial MANOVA and MANCOVA. 

Mason (2003) used a 2 x 5 between-subjects MANOVA to investigate male and female high 
school students' beliefs.about math. The six scales serving as DVs were in agreement with items con- 
cerning ability to solve difficult math problems, need for complex procedures for word problems, 
importance of understanding concepts, importance of word problems, effect of effort, and usefulness 
of math in everyday life. Multivariate tests of both main effects were statistically significant, but the 
interaction was not, Post hoc Tukey HSD tests were used to investigate the individual DVs. Belief in 
usefulness of math and need for complex procedures increased over the grades; belief in ability to 
solve difficult problems increased from the first to second year and then decreased. Girls were found 
to be more likely to believe in the importance of understanding concepts than boys. 

A more complex MANOVA design was employed by Pisula (2003) who studied responses to 
novelty in high- and low-avoidance rats. IVs were sex of rat, subline (high vs. low avoidance), and 8 
time intervals. Thus, this was a 2 x 2 x 8 mixed between-between-within MANOVA. DVs were four 
durations spent inside various zones, duration of object contact, duration of floor sniffing, and num- 
ber of walking onsets. Multivariate results were not reported, but the table of (presumably! univari- 
ate F tests suggests significant results for all effects except the sex by suh!ine interaction. A!! DVs 
showed significant differences over trials. All DVs associated with time spent inside various zones 
also showed significant differences between high- and low-avoidance sublines, as did number of 
walking ornets. Duration of object contact and number of waiking onsets showed sex differences. All 
DVs except walking onsets also showed significant two-way interactions, and duration of object con- 
tact showed a significant three-way interaction. 

A MANCOVA approach was taken by Hay (2003) to investigate quality of life variables in 
bulimic eating disorders. Two types of disorders were identified: regular binge eating and extreme 
weight control. These each were compared with a non-eating-disordered group in separate MAN- 
COVAs. It is not clear why (or if) these were not combined into a single three-group one-way MAN- 
COVA with planned comparisons between each eating-disorder group and the comparison group. 
Covariates were age, gender, income level, and BMI (body mass index). Three sets of DVs (physical 
and mental health components of SF-36 scores, eight SF-36 subscale scores, and six utility AqoL 
scores) were entered into three separate MANCOVAs for each of the comparisons, resulting in a total 
of 6 MANCOVAs. The emphasis in interpretation was on variance explained ( r 2 )  for each analysis. 
For example, 23% of the variance in mental and physical scores was associated with regular binge 
eating after adjusting for CVs, but only 5% of the variance was associated with extreme weight 
control behaviors. Similarly, binge eating was associated with greater variance in SF-36 subscale 
scores and in AqoL scores than were extreme weight control behavior. 



7.2 Kinds of Research Questions 

The goal of research using MANOVA is to discover whether behavior. as reflected by the DVs. is 
changed by manipulation (or other action) of the IVs. Statistical techniques are currently available 
for answering the types 9f questions posed in Sections 7.2.1 through 7.2.8. 

7.2.1 Main Effects of IVs 

Holding all else'constant, are mean differences in the composite DV among groups at different Izv- 
els of an IV larger than expected by chance? The statistical procedures described in Sections 7.4.1 
and 7.4.3 are designed to answer this question, by testing the null hypothesis that the IV has no sys- 
tematic effect on the optimal linear combination of DVs. 

As in ANOVA, "holding all else constant" refers to a variety of procedures: (1) controlling the 
effects of other IVs by "crossing over" them in a factorial arrangement, (2) controlling extraneous 
variables by holding them constant (e.g., running only women as subjects), counterbalancing their 
effects, or randomizing their effects, or (3) using covariates to produce an "as if constant" state by 
statistically adjusting for differences on covariates. 

In the anxiety-reduction example, the test of main effect asks: .4re there mean differenceq 
in anxiety-measured by test anxiety, stress anxiety, and free-floating anxiety-associated with 
differences in treatment? With addition of covariates, the question is: Are there differences in anxiety 
associated with treatment, after adjustment for individual differences in anxiety prior to treatment? 

When there are two or more IVs, separate tests are made for each IV. Further, when sample 
sizes are equal in all cells, the separate tests are independent of one another (except for use of a com- 
mon error term) so that the test of one IV in no way predicts the outcome of the test of another 1V. If 
the example is extended to include gender of subject as an IV, and if there are equal numbers of sub- 
jects in all cells. the des~gn produces tests of the main effect of treatment and of gender of subject, 
the two tests independent of each other. 

7.2.2 Interactions among IVs 

Holding all else constant, does change in the DV over levels of one IV depend on the level of another 
IV? The test of interaction is similar to the test of main effect, but interpreted differently, as discussed 
more fully in Chapter 3 and in Sections 7.4.1 and 7.4.3. In the example, the test of interaction asks: 
Is the pattern of response to the three types of treatments the same for men as it is for women? If the 
interaction is significant, it indicates that one type of treatment "works better" for women while 
another type "works better" for men. 

With more than two IVs, there are multiple interactions. Each interaction is tested separately 
from tests of other main effects and interactions, and these tests (but for a common error term) are 
independent when sample sizes in all cells are equal. 

7.2.3 Importance of DVs 

I f  there are significant differences for one or more of the main effects or interactions, the researcher usu- 
ally asks which of the DVs are changed and which are unaffected by the IVs. If the main effect of treat- 
ment is significant, it may be that only test anxiety is changed while stress anxiety and free-floating 
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anxiety do not differ with treatment. Ax mentioned in Section 7.1. Roy-Bargmann stepdown analysis i h  

often used where each DV is assebsed in ANCOVA with higher-priority DVs serving as covariates. 
Stepdown analysis and other procedures for assessing importance of DVs appear in Section 7.5.3. 

7.2.4 Parameter Estimates 

Ordinarily, marginal means are the best estimates of population parameters for main effects and cell 
means are the best estimates of population parameters for interactions. But when Roy-Bargrnann step- 
down analysis is used to test the importance of the DVs, the means that are tested are adjusted means 
rather than sample means. In the example, suppose free-floating anxiety is given first, stress anxiety 
second, and test anxiety third priority. Now suppose that a stepdown analysis shows that only test anx- 
iety is affected by differential treatment. The means that are tested for test anxiety are not sample 
means, but sample means adjusted for stress anxiety and free-floating anxiety. In MANCOVA, addi- 
tional adjustment is made for covariates. Interpretation and reporting of results are based on both 
adjusted and sample means, as illustrated in Section 7.6. In any event, means are accompanied by 
some measure of variability: standard deviations, standard errors, andlor confidence intervals. 

7.2.5 Specific Comparisons and Trend Analysis 

If an interaction or a main effect for an IV with more than two levels is significant, you probably want 
to ask which levels of main effect or cells of interaction are different from which others. If, in the 
example, treatment with three levels is significant, the researcher would be likely to want to ask if the 
pooled average for the two treated groups is different from the average for the waiting-list control, 
and if the average for relaxation training is different from the average for desensitization. Indeed, the 
researcher may have planned to ask these questions instead of the omnibus F questions about treat- 
ment. Similarly, if the interaction of gender of subject and treatment is significant. you may want to 
ask if there is a significant difference in the average response of women and men to, for instance, 
desensitization. 

Specific comparisons and trend analysis are discussed more fully in Sections 7.5.4, 3.2.6, 
6.5.4.3, and 8.5.2. 

7.2.6 Effect Size 

If a main effect or interaction reliably affects behavior, the next logical question is: How much? What 
proportion of variance of the linear combination of DV scores is attributable to the effect? You can 
determine, for instance, the proportion of the variance in the linear combination of anxiety scores 
that is associated with differences in treatment. These procedures are described in Section 7.4.1. Pro- 
cedures are also available for finding the effect sizes for individually significant DVs as demon- 
strated in Section 7.6, along with confidence intervals for effect sizes. 

7.2.7 Effects of Covariates 

When covariates are used, the researcher normally wants to assess their utility. Do the covariates pro- 
vide statistically significant adjustment and what is the nature of the DV-covariate relationship? For 



example. when pretests o f  tcst. mess. and  free-tluating anxiety are used ah co\,asiate.;. to what degree 
does each covariate adjust the coinposite DV'! Assessment of c ~ ~ a r i a t t ' s  is demonbtl-:~ted in Section 
7.6.3.1. 

7.2.8 Repeated-Measures Analysis of Variance 

MANOVA is an alternative to repeated-measures ANOVA in which responses to the levels of the 
within-subjects IV are simply viewed as separate DVs. Suppose, in the example, that measures of 
test anxiety are taken three times (instead of measuring three different kinds of anxiety once), before, 
immediately after, and 6 months after treatment. Results could be analyzed as a two-way ANOVA, 
with treatment as a between-subjects IV and tests as a within-subject IV, or as a one-way MANOVA, 
with treatment as a between-subjects IV and the three testing occasions as three DVs. 

As discussed in Sections 3.2.3 and 8.5.1, repeated measures ANOVA has the often-violated 
assumption of sphericity. When the assumption is violated, significance tests are too liberal and 
some alternative to ANOVA is necessary. Other alternatives are adjusted tests of the signiticance of 
the within-s~~hjects IV (e.g.. Huynh-Feldt), decomposition of the repeated-measures IV into an 
orthogonal series of single degree of freedom tests (e.g., trend analysis), and profile analysis of 
repeated measures (Chapter S). 

7.3 Limitations to Multivariate Analysis 
of Variance and Covariance 

7.3.1 Theoretical Issues 

As with all other procedures, attribution of causality to 1Vs is in no way assured by the statistical test. 
This caution is especially reievani because MANOT~'A, as an extensior. of ANOVPP, stems from 
experimental research where IVs are typically manipulated by the experimenter and desire for causal 
inference provides the reason behind elaborate controls. But the statistical test is available whether 
or not IVs are manipulated, subjects randomly assigned, and controls implemented. Therefore, the 
inference that significant changes in the DVs are caused by concomitant changes in the IVs is a log- 
ical exercise, not a statistical one. 

Choice of variables is also a question of logic and research design rather than of statistics. Skill 
is required in choosing IVs and levels of IVs, as well as DVs that have some chance of showing 
effects of the IVs. A further consideration in choice of DVs is the extent of likely correlation among 
them. The best choice is a set of DVs that are uncorrelated with each other because they each mea- 
sure a separate aspect of the influence of the IVs. When DVs are correlated, they measure the same 
or similar facets of behavior in slightly different ways. What is gained by inclusion of several mea- 
sures of the same thing? Might there be some way of combining DVs or deleting some of them so 
that the analysis is simpler'? 

In addition to choice of number and type of DVs is choice of the order in which DVs enter a 
stepdown analysis if Roy-Bargmann stepdown 1" is the method chosen to assess the importance of 
DVs (see Section 7.5.3.7). Priority is usually giver1 to more important DVs or to DVs that are con- 
sidered causally prior to others in theory. The choice is not trivial because the significance of a DV 
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may well depend on how high a priority i t  is given. juht as in serl~rential inultiple regression the sig- 
nificance of an IV is likely to depend on its position in the sequence. 

When MANCOVA is used, the same limitations apply as in ANCOVA. Consult Sections 6.3.1 
and 6.5 for a review of some of the hazards associated with interpretation of designs that include 
covariates. 

  in all^, the usual limits to generalizability apply. The results of MANOVA and MANCOVA 
generalize only to those populations from which the researcher has randomly sampled. And although 
MANCOVA may, in some very limited situations, adjust for failure to randomly assign subjects to 
groups, MANCOVA does not adjust for failure to sample from segments of the population to which 
one wishes to generalize. 

7.3.2 Practical Issues 

In addition to the theoretical and logical issues discussed above, the statistical procedure demands I 

consideration of some practical matters. 

7.3.2.1 Unequal Sample Sizes, Missing Data, and Power 

Problems associated with unequal cell sizes are discussed in Section 6.5.4.2. Problems caused by 
incomplete data (and solutions to them) are discussed in Chapters 4 and 6 (particularly Section 
6.3.2.1). The discussion applies to MANOVA and, in fact, may be even more relevant because, as 
experiments are complicated by numerous DVs and, perhaps, covariates, the probability of missing 
data increases. 

In addition, when using MANOVA, it is necessary to have more cases than DVs in every cell. 
With numerous DVs this requirement can become burdensome, especially when the design is com- 
plicated and there are numerous cells. There are two reasons for the requirement. The first is associ- 
ated with the assumption of homogeneity of variance-covariance matrices (see Section 7.3.2.4). If a I 

cell has more DVs than cases, the cell becomes singular and the assumption is untestable. If the cell 
has only one or two more cases than DVs, the assumption is likely to be rejected. Thus MANOVA as 
an analytic strategy may be discarded because of a failed assumption when the assumption failed 
because the cases-to-DVs ratio is too low. 

Second, the power of the analysis is lowered unless there are more cases than DVs in every cell 
because of reduced degrees of freedom for error. One likely outcome of reduced power is a non- 
significant multivariate F, but one or more significant univariate Fs (and a very unhappy researcher). 
Sample sizes in each cell must be sufficient in any event to ensure adequate power. There are many 
software programs available to calculate required sample sizes depending on desired power and 
anticipated means and standard deviations in an ANOVA. An Internet search for "statistical power" 
reveals a number of them, some of which are free. One quick-and-dirty way to apply these is to pick 
the DV with the smallest expected difference that you want to show statistical significance-your 
minimum significant DV. One program specifically designed to assess power in MANOVA is 
GANOVA (Woodward, Bonett, & Brecht, 1990). Another is NCSS PASS (2002), which now 
includes power analysis for between-subjects MANOVA. Required sample size also may be esti- 
mated through SPSS MANOVA by a process of successive approximation. For post hoc estimates of 
power at a glven sample size, you compute a constant weighting variable. we~ght cases by that vari- 
able, and rerun the analysis until deslred power 1s ach~eved (Davld P. Nichols, SPSS, personal com- 



munication, April 19. 3005). Platris input is usrf'~i1 for a prior1 estimates of 4;1niple 5 i ~ e  using SPSS 
MANOVA (D' Amico, Neilands, LYL Zambarano, 200 I ). 

Power in MANOVA also depends on the relationships among DVs. Power for the multivariate 
test is highest when the pooled within-cell correlation among two DVs is high and negative. The 
multivariate test has much less power when the correlation is positive, zero, or moderately negative. 
An intetesting thing happens, however, when one of two DVs is affected by the treatment and the 
other is not. The higher the absolute value of the correlation between the two DVs, the greater the 
power of the multivariate test (Woodward et al., 1990). 

7.3.2.2 Multivariate Normality 

Significance tests for MANOVA, MANCOVA, and other multivariate techniques are based on the 
multivariate normal distribution. Multivariate normality implies that the sampling distributions of 
means of the various DVs in each cell and all linear combinations of them are normally distributed. 
With univariate F and large samples, the central limit theorem suggests that the sainpling distribu- 
tion of means approaches normality even when raw scores do not. Univariate F is robust to modest 
v~olations of normaiity as iong as there are at least 20 degrees of freedom f ~ r  error in a iinivariate 
ANOVA and the violations are not due to outliers (Section 4.1.5). Even with unequal rz and only a 
few DVs, a sample size of about 20 in the smallest cell should ensure robustness (Mardia, 197 1). In 
Monte Carlo studies, Seo, Kanda, and Fujikoshi (1995) have shown robustness to nonnormality in 
MANOVA with overall N = 40 ( n  = 10 per group). 

With small, unequal samples, normality of DVs is assessed by reliance on judgment. Are the 
individual DVs expected to be fairly normally distributed in the population? If not, is some transfor- 
mation likely to produce normality? With a nonnormally distributed covariate consider transformation 
or deletion. Covariates are often included as a convenience in reducing error, but it is hardly a conve- 
nience if it reduces power. 

7.3.2.3 Absence of Outliers 

One of the more serious limitations of MANOVA (and ANOVA) is its sensitivity to outliers. Espe- 
cially worrisome is that an outlier can produce either a Type 1 or a Type II error, with no clue in the 
analysis as to which is occurring. Therefore, it is highly recommended that a test for outliers accom- 
pany any use of MANOVA. 

Several programs are available for screening for univariate and multivariate outliers (cf. Chapter 
4). Run tests for iinivaricite and multivariate outliers for each cell of the design separately and change, 
transform, or eliminate them. Report the change, transformation, or deletion of outlying cases. Screen- 
ing runs for within-cell univariate and multivariate outliers are shown in Sections 6.6.1.4 and 7.6.1.4. 

7.3.2.4 Homogeneity of Variance-Covariance Matrices 

The multivariate generalization of homogeneity of variance for individual DVs is homogeneity of 
variance-covariance matrices as discussed in Section 4 .1 .5 .3 .~  The assumption is that variance- 
covariance matrices within each cell of the design are sampled from the same population variance- 

'ln MANOVA. homogeneity of variance tor each of the DV< 1s also assumed. See Sect~on 8.3.2.4 tor di\cuxion and 
recollimendatio~is. 



cov:lriance matrix and can reasonablj be pooled to create :\ bingle estiniate of error.' If the uithin-cell 
error matrices are heierogeneous, the pooled matrix is misleading as an estimate of error variance. 

The following guidelines for testing this assumption in MANOVA are based on a generalization 
of a Monte Carlo test of robustness for T' (Hakstian, Roed. & Lind, 1979). If sample sizes are equal, 
robustness of significance tests is expected; disreg&d the outcome of BOX'S M test, a notoriously sen-. 
sitive test of homogeneity of variance-covariance matrices available through SPSS MANOVA. 

However, if sample sizes are unequal and Box's M test is significant at p < .OO 1. then robust- 
ness is not guaranteed. The more numerous the DVs and the greater the discrepancy in cell sample 
sizes, the greater the potential distortion of alpha levels. Look at both sample sizes and the sizes of 
the variances and covariances for the cells. If cells with larger samples produce larger variances and 
covariances, the alpha level is conservative so that null hypotheses can be rejected with confidence. 
If, however, cells with smaller samples produce larger variances and covariances, the significance 
test is too liberal. Null hypotheses are retained with confidence but indications of mean differences 
are suspect. Use Pillai's criterion instead of Wilks' lambda (see Section 7.5.2) to evaluate multivari- 
ate significance (Olson, 1979); or equalize sample sizes by random deletion of cases, if power can be 
maintained at reasonable levels. 

7.3.2.5 Linearity 

MANOVA and MANCOVA assume linear relationships among all pairs of DVs, all pairs of covari- 
ates, and all DV-covariate pairs in each cell. Deviations from linearity reduce the power of the sta- 
tistical tests because (1) the linear combinations of DVs do not maximize the separation of groups 
for the IVs, and (2) covariates do not maximize adjustment for error. Section 4.1 .5.2 provides guide- 
lines for checking for and dealing with nonlinearity. If serious curvilinearity is found with a covari- 
ate, consider deletion; if curvilinearity is found with a DV, consider transformation-provided, of 
course, that increased difficulty in interpretation of a transformed DV is worth the increase in power. 

7.3.2.6 Homogeneity of Regression 

In Roy-Bargmann stepdown analysis (Section 7.5.3.23 and in MANCOVA (Section 7.4.3) it is I 
I 

assumed that the regression between covariates and DVs in one group is the same as the regression in 
other groups so that using the average regression to adjust for covariates in all groups is reasor~able. 

In both MANOVA and MANCOVA, if Roy-Bargmann stepdown analysis is used, the irnpor- 
tance of a DV in a hierarchy of DVs is assessed in ANCOVA with higher-priority DVs serving as 
covariates. Homogeneity of regression is required for each step of the analysis, as each DV, in turn, 
joins the list of covariates. If heterogeneity of regression is found at a step, the rest of the stepdown 
analysis is uninterpretable. Once violation occurs, the IV-"covariate" interaction is itself interpreted 
and the DV causing violation is eliminated from further steps. 

In MANCOVA (like ANCOVA) heterogeneity of regression implies that there is interaction 
between the IV(s) and the covariates and that a different adjustment of DVs for covariates is needed 
in different groups. If interaction between IVs and covariates is suspected, MANCOVA is an 
inappropriate analytic strategy, both statistically and logically. Consult Sections 6.3.2.7 and 6.5.5 for 
alternatives to MANCOVA where heterogeneity oi regression is found. 

' ~ o n ' t  confuse this assurnptlon w ~ t h  the assumptcon of s p h e r ~ c ~ t y  that is relevant tu repeated-rnea\ure\ ANOVA or MANOVA. 
as discussed in Section 6.5.4.1 and 8.5.1, 
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For ~LI.~IVOVA, rrst,/01. .stc~ptlo\i,i~ l~orr~o,qrilrin of'i.c~gi.e.v.siol~, clrltl I\.I,-\NCOVA, tc.vr f i ~ r  o\,ri-- 
(dl aizcl strpclo\i,r~ homogerleirj. c!f'~-egir.~sion. These procedures are demonstrated in Section 7.6.1.6. 

7.3.2.7 Reliability of Covariates 

In MANCOVA as in ANCOVA, the F test for mean differences is more powerful if covariates are 
reliable. If covariates are not reliable, either increased Type I or Type I1 errors can occur. Reliability 
of covariates is discussed more fully in Section 6.3.2.8. 

In Roy-Bargmann stepdown analysis where all but the lowest-priority DV act as covariates in 
assessing other DVs, unreliability of any of the DVs (say, r,, < .8) raises questions about stepdown 
analysis as well as about the rest of the research effort. WhenDVs are unreliable, use another method 
for assessing the importance of DVs (Section 7.5.3) and report known or suspected unreliability of 
covariates and high-priority DVs in your Results section. 

7.3.2.8 Absence.of Multicollinearity and Singularity 

When correlations among DVs are high, one DV is a near-linear combination of other DVs; the DV 
provides information that is redundant to the information available in one or more of the other DVs. 
It is both statistically and logically suspect to include all the DVs in analysis and the ~isual sol~ition 
is deletion of the redund~lnt DCi However, if there is some compelling theoretical reason to retain all 
DVs, a principal components analysis (cf. Chapter 13) is done on the pooled within-cell correlation 
matrix, and component scores are entered as an alternative set of DVs. 

SAS and SPSS GLM protect against multicollinearity and singularity through computation of 
pooled within-cell tolerance ( 1 - SMC) for each DV; DVs with insufficient tolerance are deleted from 
analysis. In SPSS MANOVA, singularity or multicollinearity may be present when the determinant of 
the within-cell correlation matrix is near zero (say, less than .0001). Section 4.1.7 discusses multi- 
collinearity and \ingularity and has quggest~onc for ~dentlfy~ng the redundant variable(s). 

7.4 Fundamental Equations for Multivariate 
Analysis of Variance and Covariance 

7.4.1 Multivariate Analysis of Variance 

A minimum data set for MANOVA has one or more IVs, each with two or more levels, and two or 
more DVs for each subject within each combination of IVs. A fictitious small sample with two DVs 
and two IVs is illustrated in Table 7.1. The first IV is degree of disability with three levels-mild, 
moderate, and severe-and the second is treatment with two levels-treatment and no treatment. 
These two IVs in factorial arrangement produce six cells; three children are assigned to each cell so 
there are 3 X 6 or 18 children in the study. Each child produces two DVs: score on the reading subtest 
of the Wide Range Achievement Test (WRAT-R) and score on the arithmetic subtest (WRAT-A). In 
addition an IQ score is given in parentheses for each child to be used as a covariate in Section 7.4.3. 

The test of the main effect of treatment asks: Disregarding degree of disability, does treatment 
affect the composite score created from the two subtests of the WRAT? The test of interaction asks: 
Does the effect of treatment on a difference cornposite score from the two subtests differ as a func- 
tion of degree of disability'? 
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TABK.E 7.1 Small-Sample Data for Illustration of ;lIultivariate Analysis of Yariance 

Mild iCIoderate Severe 

WRAT-R CVRAT-A ( IQ)  WRAT-R WMT-A ( IQ)  WRAT-R WHAT-A ( IQ)  

115 108 (110) 100 I05 (115) 89 7 8 (99) 
Treatment 98 I05 (102) 105 95 (98) 100 85 ( 102) 

107 98 (100) 95 98 (100) 90 95 (100) 

90 92 (108) 70 80 (100) 65 62 (101) 
Control 85 95 (115) 85 68 (99) 80 70 (95) 

80 8 1 (95) 78 82 (105) 72 73 (102) 

The test of the main effect of disability is automatically provided in the analysis but is trivial 1 

in this example. The question is: Are scores on the WRAT affected by degree of disability? Because 
degree of disability is at least partially defined by difficulty in reading andlor arithmetic, a significant I 

effect provides no useful information. On the other hand, the absence of this effect would lead us to 
question the adequacy of classification. 

The sample size of three children per cell is highly inadequate for a realistic test but serves to 
illustrate the techniques of MANOVA. Additionally, if causal inference is intended, the researcher 
should randomly assign children to the levels of treatment. The reader is encouraged to analyze these 
data by hand and by computer. Syntax and selected output for this example appear in Section 7.4.2 
for several appropriate programs. 

MANOVA follows the model of ANOVA where variance in scores is partitioned into variance 
attributable to difference among scores within groups and to differences among groups. Squared dif- 
ferences between scores and various means are summed (see Chapter 3); these sums of squares, 

i 

when divided by appropriate degrees of freedom, provide estimates of variance attributable to dif- 1 
ferent sources (main effects of IVs, interactions among IVs, and error). Ratios of variances provide 
tests of hypotheses about the effects of IVs on the DV. 

In MANOVA, however, each subject has a score on each of several DVs. When several DVs 
for each subject are measured, there is a matrix of scores (subjects by DVs) rather than a simple set 
of DVs within each group. Matrices of difference scores are formed by subtracting from each score 
an appropriate mean; then the matrix of differences is squared. When the squared differences are 
summed, a sum-of-squares-and-cross-products matrix, an S matrix, is formed, analogous to a sum of 
squares in ANOVA (Section 16.4). ~ e t e r m i n a n t s ~  of the various S matrices are found, and ratios 
between them provide tests of hypotheses about the effects of the IVs on the linear combination of 
DVs. In MANCOVA, the sums of squares and cross products in the S matrix are adjusted for covari- 
ates, just as sums of squares are adjusted in ANCOVA (Chapter 6). 

The MANOVA equation for equal n is developed below through extension of ANOVA. The 
simplest partition apportions variance to systematic sources (variance attributable to differences 

"A determinant, as described in Appendix A, can be viewed as a measure o f  generalized variance for a matrix. 





256 C H A P T E R  7 

For MANOVA. there is no \ingle DC' but rather 3 column matrix (or vector) of YX,,,  ~ a l ~ ~ e s o t '  
scores on each DV. For the example in Table 7.1, column matrices of Y scores for the three children 
in the tirst cell of the design (mild disability with treatment) are 

Similarly, there is a column matrix of disability-Dk-means for mild, moderate, and severe 
levels of D, with one mean in each matrix for each DTJ. 

where 95.83 is the mean on WRAT-R and 96.50 is the mean on WRAT-A for children with mild dis- 
l 

ability, averaged over treatment and control groups. 
M~trices fer tre~tme~t-T,,-means, aversged sver cf?i!dren with a!! !eve!s of disability are 

Similarly, there are six matrices of cell means (DTk,) averaged over the three children in each group. 
Finally, there is a single matrix of grand means (GM), one for each DV, averaged over all chil- 

dren in the experiment. 

! 
As illustrated in Appendix A. differences are found by simpiy subtracting one matrix from another, j 

to produce difference matrices. The matrix counterpart of a difference score, then, is a difference 
matrix. To produce the error term for this example, the matrix of grand means (GM) is subtracted 
from each of the matrixes of individual scores (yk,). Thus for the first child in the example: 

In ANOVA, difference scores are squared. The matrix counterpart of squaring is multiplication 
by a transpose. That is, each column matrix is multiplied by its corresponding row matrix (see 
Appendix A for matrix transposition and multiplication) to produce a sum-of-squares and cross- I 

products matrix. For example, for the first child in the first group of the design: 
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These matrices are then surnmcd ober subjects and over groups, just as squared differences are 
summed in univariate AN OVA."^^ order of summing and squaring is the same in MANOVA as in 
ANOVA for a comparable design. The resulting matrix (S) is called by vanous names: sum-of- 
squares and cross-products, cross-products, or sum-of-products. The MANOVA partition of sums- 
of-squares and cross-products for our factorial example is represented below in a matrix form of 
~ ~ u a t i o n  7.3: 

= n k t ( ~ x  - GM)(D, - G M ) ' + ~ , ~ ( T , , , -  GM)(T,  - GM)' 
k m 

The total cross-products matrix (Stota,j is partitioned into cross-products matrices for 
differences associated with degree of disability, with treatment, with the interaction 
between disability and treatment, and for error-subjects within groups (S,(,,,). 

For the example in Table 7.1, the four resulting cross-products matrices6 are 

Notice that all these matrices are symmetrical, with the elements top left to bottom right diagonal 
representing sums of squares (that, when divided by degrees of freedom, produce variances), and 
with the off-diagonal elements representing sums of cross products (that, when divided by degrees 
of freedom, produce covariances). In this example, the first element in the major diagonal (top left to 
bottom right) is the sum of squares for the first DV, WRAT-R, and the second element is the sum of 

highly recommend using a matrix algebra program, such as a spreadsheet or SPSS MATRIX, MATLAB, or SAS IML, 
to follow the more complex matrix equations to come. 

6Numbers producing these matrlces were carried to 8 digits hefore rounding. 
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\quare\ for the second DV, WRAT-A The off-d~dgondi element5 are the \urn\ ot cro5s-product4 
between WRAT-R and WRAT-A. 

In ANOVA, sums of squares are divided by degrees of freedom to produce variances. or mean 
squares. In MANOVA, the matrix analog of variance is a determinant (see Appendix A); the deter- 
minant is found for each cross-products matrix. In ANOVA, ratios of variances are formed to test 
main effects and interactions. In MANOVA, ratios of determinants are formed to test main effects 
and interactions when using Wilks' lambda (see Section 7.5.2 for additional criteria). These ratios 
follow the general form 

Wilks' lambda (A) is the ratio of the determinant of the error cross-products matrix to the 
determinant of the sum of the error and effect cross-products matrices. 

To find Wilks' lambda, the within-groups matrix is added to matrices corresponding to main 
effects aiid iiiieracdoiis before deteriiiiiiaiits are foiiiib. For the exarlpie, tiie iiiatiix prodiiced by 
adding the SDT matrix for interaction to the S S ( D T ,  matrix for subjects within groups (error) is 

For the four matrices needed to test main effect of disability, main effect of treatment, and the 
treatment-disability interaction, the determinants are 

At this point a source table, similar to the source table for ANOVA, is useful, as presented in 
Table 7.2. The first column lists sources of variance; in this case the two main effects and the inter- 
action. The error term does not appear. The second column contains the value of Wilks' lambda. 

Wilks' lambda is a ratio of determinants, as described in Equation 7.4. For example, for the 
interaction between disability and treatment, Wilks' lambda is 

Tables for evaluating Wilks' lambda directly are rare, however, an approximation to F has been 
derived that closely fits A. The last three columns of Table 7.2, then, represent the approximate F val- 
ues and their associated degrees of freedom. 
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TABLE 7.2 blultivariate .-lrlalysis of Variance of WRAT-R 
and WRAT-.A Scores 

Source of Wilks' Multivariate 
Variance Lambda dfl dfi F 

Treatment 13772 2.00 1 1 .OO 34.43570"'" 

Disability .25526 4.00 22.00 5.38602" 

Treatment by disability .90807 4.00 22.00 0.27 170 

*p <.01. 

"*(, < ,001. 

The following procedure for calculating approximate F (Rao, 1952) is based on Wilks' lambda 
and the various degrees of freedom associated with it. 

\ / ~ r  \ 

Approximate F (df 

where df and df2 are defined below as the degrees of freedom for testing the F ratio, and y is 

A is defined in Equation 7.4, and s is7 

where p 1s the number of DVs, and dfeffect is the degrees of freedom for the effect being tested. And 

and 

where df,,,, is the degrees of freedom associated with the error term. 

For the test of interaction in the sample problem, we have 

p = 2 the number of DVs 

dfeRect = 2 the number of treatment levels minus 1 times the number of disability levels 
minus 1 or ( t  - I)(d - 1) 

df,,,, = 12 the number of treatment levels times the number of disability levels times the 
quantity n - I (where n is the number of scores per cell for each DV)-that is, 
df,,,,, = d t  (n - I ) 

'when p = 1. we have univariate ANOVA. 
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Approximate F (4, 22) = (.i:liii) - (7) = 0.27 17 

This approximate F value is tested for significance by using the usual tables of F at selected a. 
In this example, the interaction between disability and treatment is not statistically significant with 4 
and 22 df, because the observed value of 0.27 17 does not exceed the critical value of 2.82 at a = .05. 

Following the same procedures, the effect of treatment is statistically significant, with the 
observed value of 34.44 exceeding the critical value of 3 98 with 2 and 1 ! df, rv = .O. The effect ~f 
degree of disability is also statistically significant, with the observed value of 5.39 exceeding the crit- 
ical value of 2.82 with 4 and 22 df, a: = .05. (As noted previously, this main effect is not of research 
interest, but does serve to validate the classification procedure.) In Table 7.2, significance is indi- 
cated at the highest level of cu reached, following standard practice. 

A measure of effect size is readily available from Wilks' lambda.' For MANOVA: 

This equation represents the variance accourited for by the best linear combination of DVs as 
explained below. 

In a one-way analysis. according to Equation 7.4, Wilks' lambda is the ratio of (the determi- 
nant of) the error matrix and (the determinant of) the total sum-of-squares and cross-products matrix. 
The determinant of the error matrix-A-is the variance not accounted for by the combined DVs so 
1 - A is the variance that is accounted for. 

Thus, for each statistically significa~t effect, the proportion of variance accounted for is easily 
calculated using Equation 7.8. For example, the main effect of treatment: 

In the example, 86% of the variance in the best linear combination of WRAT-R and WRAT-A 
scores is accounted for by assignment to levels of treatment. The square root of v12 (7 = .93) is a form 
of correlation between WRAT scores and assignment to treatment. 

However, unlike r12 in the analogous ANOVA design, the sum of 172 for all effects in MANOVA 
may be greater than 1 .O because DVs are recombined for each effect. This lessens the appeal of an 
interpretation in terms of proportion of variance accounted for, although the size of 112 is still a mea- 
sure of the relative importance of an effect. 

%n alternative measure ofefiect slze is canon~cal correlation, printed out by some computer programs. Canonical correlation is 
the correlation between the optimal linear combination of IV levels and the optimal linear combination of DVs where optimal is 
chosen to maximize the correlation between combined IVs and DVs. Canonical correlation as a general procedure is discussed 
in Chapter 12, and the relation between canonical correlation and MANOVA is discussed briefly in Chapter 17. I 
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Another difficulty in using this form of 17' is that effects tend to be much larger in the multi- 
variate than in the univariate case. Therefore, a recommended alternative, when s > 1 is 

partial r12 = 1 - Alls (7.9) 

I 
I Estimated effect size is reduced to .63 with the use of partial r12 for the current data, a more rea- 

sonable assessment. Confidence limits around effect sizes are in Section 7.6. 

7.4.2 Computer Analyses of Small-Sample Example 

Tables 7.3 through 7.5 show syntax and selected minimal output for SPSS MANOVA, SPSS GLM, 
and SAS GLM, respectively. 

In SPSS MANOVA (Table 7.3) simple MANOVA source tables, resembling those of ANOVA, 
are printed out when PRINT=SIGNIF(BRIEF) is requested. After interpretive material is printed 
(not shown), the source table is shown, labeled Tests using UNIQUE sums of squares and 
WITHIN+RESIDUAL. WITHIN+RESIDUAL refers to the pooled within-cell error SSCP matrix 
(Section 7.4.1) plus any effects not tested, the error term chosen by default for MANOVA. 

For the example, the two-way MANOVA source table consists of the two main effects and the 
interaction. For each source, you are given Wilks' lambda, Approximate (multivariate) F with 
numerator and denominator degrees of freedom (Hyp. DF and Error DF, respectively), and the 
probability level achieved for the significance test. 

Syntax for SPSS GLM is similar to that of MANOVA, except that levels of IVs are not shown 
in parentheses. METHOD, INTERCEPT, and CRITERIA instructions are produced by the menu 
system by default. 

Output consists of a source table that includes four tests of the multivariate effects, Pillai's, 
Wilks', Hotelling's, and Roy's (see Section 7.5.2 for a discussion of these tests). All are identical 
.;*.he:: there are only two !evels of a hetween-sub-jects IV. The results of Wilks' Lambda test match 
those of SPSS MANOVA in Table 7.3. This is followed by univariate tests on each of the DVs, in the 

TABLE 7.3 MANOVA on Small-Sample Example through SPSS MANOVA 
(Syntax and Outpit) 

MANOVA 
WRATR WRATA BY TREATMNT(1,2) DISABLTY(1,3) 
/PRINT=SIGNIF(BRIEF) 
/DESIGN = TREATMNT DISABLTY TREATMNT*DISABLTY. 

Multivariate Tests of Significance 
Tests using UNIQUE sums of squares and WITHIN+RESIDUAL error term 
Source of Variation Wilks Approx F Hyp. DF Error DF Sig of F 

TREATMNT . I 3 8  3 4 . 4 3 6  2 . 0 0  1 1 . 0 0 0  . 0 0 0  
DISABLTY . 2 5 5  5 . 3 8 6  4 . 0 0  2 2 . 0 0 0  . 0 0 4  
TREATMNT * DISABLTY . 9 0 8  . 2 7 2  4 . 0 0  2 2 . 0 0 0  . 8 9 3  
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TABLE 7.4 LL1ANOV.A on Small-Sample Example through SPSS GLlZI (Syntax and Selected Output) 

G LM 
wratr wrata BY treatmnt disablty 
/METHOD = SSTYPE(3) 
/INTERCEPT = INCLUDE 
/CRITERIA = ALPHA(.05) 
/DESIGN = treatmnt disablty treatmnt*disablty. 

General Linear Model 

Between-Subjects Factors 

Multivariate TestsC 

Treatment 1 .OO 

type 2.00 

Degree oi i .OO 

2.00 

3.00 

aExact statistic 
bThe statistic is an upper bound on F that yields a lower bound on the significance level. 
CDesign: Intercept+Treatmnt+Disablty+Treatmnt * Disablty 

Value Label 

'Treatment 

Control 

Miid 

Moderate 

Severe 

N 

9 

9 

6 

6 

6 

Sig. 

.OOO 

Effect 

Intercept Pillai's Trace 
Wi i~s '  Lambda 
Hotelling's Trace 
Roy's Largest Root 

Treatmnt Pillai's Trace 
Wilks' Lambda 
Hotelling's Trace 
Roy's Largest Root 

Disablty Pillai's Trace 
Wilks' Lambda 
Hotelling's Trace 
Roy's Largest Root 

Treatmnt Pillai's Trace 
* disablty Wilks' Lambda 

Hotelling's Trace 
Roy's Largest Root 

Error 
d f 

11 .OOO 

Value 

.998 

.002 
488.687 
488.687 

.862 
138 

6.261 
6.261 

.750 

.255 
2.895 
2.887 

.092 

.908 

.I01 

.098 

F 

2687.77ga 

Hypothesis 
d f 

2.000 
2687.779" 2.000 11.000 .OOO 
2687.771" 2 . 0 0 0  11.000 0 0 0  
2687.77ga 2.000 11.000 .OOO 

000 
.OOO 
.OOO 
.OOO 

.019 

.004 

.001 

.OOO 

.882 
,893 
.905 
.571 

11.000 
11 .OOO 
11.000 
11.000 

24.000 
22.000 
20.000 
12.000 

24.000 
22.000 
20.000 
12.000 

I 

34.436a 
34.436" 
34.436= 
34.436a 

3.604 
5. 386" 
7.238 

1 7.323b 

.290 

.272a 
,252 
.588b 

2.000 
2.000 
2.000 
2.000 

4.000 
4.000 
4.000 
2.000 

4.000 
4.000 
4.000 
2.000 



TABLE 7.4 Continued 
-- - - - - -- - - -- 

Tests of Between-Subjects Effects 

aR Squared = .828 (Adjusted R Squared = .756) 
bR Squared = ,832 (Adjusted R Squared = .762) 

d f 

5 
5 

1 
1 

1 
1 

2 
2 

2 
2 

12 
12 

18 
18 

17 
17 

b 

Source Dependent Variable 

Corrected Model WRAT - Reading 
WRAT - Arithmetic 

Intercept WRAT - Reading1 
WRAT - Arithmetic 

Treatmnt WRAT - Reading 
WRAT - Arithmetic 

Disablty WRAT - Reading 
WRAT - Arithmetic 

Treatmnt * Disablty WRAT - Reading 
WRAT - Arithmetic 

- 
Error WRAT - Reading 

WRAT - Arithmetic 

Total WRAT - Reading 
WRAT - Arithmetic 

Corrected Total WRAT - Reading 
WRAT - Arithmetic - 

Sig. 

.OOO 

.OOO 

,000 
.OOO 

.OOO 
,000 

,018 
.001 

.977 
,571 

Mean 
Square 

522.756 
534.756 

142934.222 
136938.999 

2090.889 
1494.222 

260.389 
563.389 

1.056 
26.389 

45.333 
44.944 

Type Ill Sum 
of Squares 

261 3.778a 
2673.778b 

142934.222 
136938.889 

2090.889 

- 
1494.222 

520.778 

- 
1 126.778 

2.1 11 
52.778 

544.000 
539.333 

146092.000 
1401 52.000 

31 57.778 
3213.1 11 

F 

1 1.531 
11.898 

31 52.961 
3046.848 

46.123 
33.246 

5.744 
12.535 

.023 

.587 
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table labeled Tests of Between-Subjects Effects The format of the table followc that of univari- 
ate ANOV.4 (see Table 6.5). Note that interpretation of hIANOV,4 through univariate ANOVAs / l o t  

recommended (cf. Section 7.5.3.1). 
In SAS GLM (Table 7.5) IVs are defined in a c 1 a s s instruction and the mode 1 instruction 

defines the DVs and the effects to be considered. The noun i instruction suppresses printing of 
descriptive statistics and univariate F tests. The ma nova h = -a 1 1- instruction requests tests of all 
main effects and interactions listed in the mode 1 instruction, and s h o r t  condenses the printout. 

The output begins with some interpretative information (not shown), followed by separate sec- 
tionsfor TREATMNT, D I S A B L T Y ,  and T R E A T M N T * D I S A B L T Y .  Eachsource tableis preceded 
by information about characteristic roots and vectors of the error SSCP matrix (not shown-these 
are discussed in Chapters 9, 12, and 13), and the three df parameters (Section 7.4.1). Each source 
table shows results of four multivariate tests, fully labeled (cf. Section 7.5.2). 

7.4.3 Multivariate Analysis of Covariance I 

In MANCOVA, the linear combination of DVs is adjusted for differences in the covariates. The 
adjusted linear combination of DVs is the combination that would be obtained if all participants had 
the same scores on the covariates. For this example, pre-experimental IQ scores (listed in parenthe- 
ses in Table 7.1) are used as covariates. 

In MANCOVA the basic partition of variance is the same as in MANOVA. However, all the 
matrices-&,, Dk, T,, DTkm, and GM-have three entries in our example; the first entry is the 
covariate (IQ score) and the second two entries are the two DV scores (WRAT-R and WRAT-A). For 
example, for the first child with mild disability and treatment, the column matrix of covariate and DV 
scores is 

y111 = 

Ll08] (WRAT-A) 

As in MANOVA, difference matrices are found by subtraction, and then the squares and cross- 
products matrices are found by multiplying each difference matrix by its transpose to form the S 
matrices. 

At this point another departure from MANOVA occurs. The S matrices are partitioned into 
sections corresponding to the covariates, the DVs, and the cross-products of covariates and DVs. For 
the example, the cross-products matrix for the main effect of treatment is 

The lower right-hand partition is the ST matrix for the DVs (or SF') and is the same as the ST 
matrix developed in Section 7.4.1. The upper left matrix is the sum of squares for the covariate 
(or SF'). (With additional covanates, this segment becomes a full sum-of-squares and cross- 
products matrix.) Finally, the two off-diagonal segments contain cross-products of covariates and 
DVS (or SF 'I). 
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TABLE 7.5 kI.\NOV.I on Small-Sample Example through SAS GLAl 
(Syntax and Selected Output) 

p r o c  g l m  data=SASUSER.SS-MANOV; 
c l a s s  TREATMNT DISABLTY; 
m o d e l  WRATR WRATA=TREATMNT DISABLTY TREATMNTkDISABLTY / n o u n i ;  
manova h= -a l l -  / s h o r t ;  

run ;  

MANOVA T e s t  C r i t e r i a  a n d  E x a c t  F S t a t i s t i c s  f o r  
t h e  H y p o t h e s i s  o f  NO O v e r a l l  TREATMNT E f f e c t  

H = Type  111 SSCP M a t r i x  f o r  TREATMNT 
E  = E r r o r  SSCP M a t r i x  

S t a t i s t i c  V a l u e  F V a l u e  Num D F  Den DF P r  > F 

W i l k s '  lambda 0.137721 39 34.44 2 '11 <.OGOI 
P i  1 l a i  ' s  T r a c e  0.86227861 34 .44  2 11 <.0001 
H o t e l l i n g - L a w l e y  T r a c e  6.26103637 34.44 2 11 <.0001 
Roy ' s  G r e a t e s t  Roo t  6.261 03637 34.44 2 11 <.0001 

C h a r a c t e r i s t i c  R o o t s  a n d  V e c t o r s  o f :  E I n v e r s e  * H, w h e r e  
H = Type  111 SSCP M a t r i x  f o r  DISABLTY 

E  = E r r o r  SSCP M a t r i x  

C h a r a c t e r i s t i c  
R o o t  P e r c e n t  

C h a r a c t e r i s t i c  V e c t o r  V t E V = l  
WRATR WRATA 

MANOVA T e s t  C r j t e r i a  and F A p p r o x i m a t i n n s  f o r  
t h e  H y p o t h e s i s  o f  NO O v e r a l l  DISABLTY E f f e c t  

H = Type  I11 SSCP M a t r i x  f o r  DISABLTY 
E  = E r r o r  SSCP M a t r i x  

S t a t i s t i c  V a l u e  F V a l u e  Num D F  Den D F  P r  > F 

W i t k s '  Lambda 0.25526256 5.39 4 22 0.0035 
P i l l a i ' s  T r a c e  0.750481 08 3.60 4 24 0.0195 
H o t e l l i n g - L a w L e y  T r a c e  2.89503407 7 . 7 9  4 12.235  0.0023 
R o y ' s  G r e a t e s t  Roo t  2.88724085 17 .32  2 12 0.0003 

NOTE: F S t a t i s t i c  f o r  R o y ' s  G r e a t e s t  R o o t  i s  an  u p p e r  b o u n d .  
NOTE: F S t a t i s t i c  f o r  W i l k s '  l ambda i s  e x a c t .  
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TABLE 7.5 Continued 

C h a r a c t e r i s t i c  R o o t s  a n d  V e c t o r s  o f :  E I n v e r s e  * H, w h e r e  
H = Type  I11 SSCP M a t r i x  f o r  TREATMNT*DISABLTY 

E = E r r o r  SSCP M a t r i x  

C h a r a c t e r i s t i c  
R o o t  P e r c e n t  

C h a r a c t e r i s t i c  V e c t o r  V n E V = l  
WRATR WRATA 

MANOVA T e s t  C r i t e r i a  and  F A p p r o x i m a t i o n s  f o r  
t h e  H y p o t h e s i s  o f  NO OveraLL  TREATMNT*DISABLTY E f f e c t  

H = Type I11 SSCP M a t r i x  f o r  TREATMNT*DISABLTY 
E = E r r o r  SSCP M a t r i x  

S t a t i s t i c  V a l u e  F Num D F  Den DF P r  > F 

W iLks '  Lambda 0.90806786 0.27 4 22 0.8930 
P i  L l a i  ' s  T r a c e  0.09219163 0.29 4 24 0.8816 
H o t e l l i n g - L a w l e y  T r a c e  0.10095353 0.27 4 12.235 0.8908 
Roy 's  G r e a t e s t  Roo t  0.09803883 0.59 2 12 0.5706 

NOTE: F S t a t i s t i c  f o r  R o y ' s  G r e a t e s t  R o o t  i s  a n  u p p e r  b o u n d .  
NOTE: F S t a t i s t i c  f o r  W i L k s '  Lambda i s  e x a c t .  

I 
Adjusted or S* matrices are formed from these segments. The S* matrix is the sums-of-squares I i 

and the cross-products of DVs adjusted for effects of covariates. Each sGm of squares 2nd each cress- 
product is adjusted by a value that retlects variance due to differences in the covariate. 

In matrix terms, the adjustment is 

The adjusted cross-products matrix S* is found by subtracting from the unadjusted 
cross-products matrix of DVs ( s ( ~ ) )  a product based on the cross-products matrix for 
covariate(s) and cross-products matrices for the relation between the covariates 
and the DVs (s( Y X )  and s ( ~  y ) ) .  

The adjustment is made for the regression of the DVs (Y) on the covariates (X). Because s ( ~ ~ )  
is the transpose of s'~'), their multiplication is analogous to a squaring operation. Multiplying by the 
inverse of s(') is analogous to division. As shown in Chapter 3 for simple scalar numbers, the regres- 
sion coefficient is the sum of cross-products between X and Y,  divided by the sum of squares for X. 
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An adjustment is mads to each S matrix to produce S:: matrices. The S "  nlatrices are Z x 2 
nlatrices, but their entries are usually smaller than those i l l  the original MANOVA S matrices. For the 
example, the reduced S:': matrices are 

Note that, as in the lower right-hand partition, cross-products matrices may have negative val- 
ues for entries other than the major diagonal which contains sums of squares. 

Tests appropriate for MANOVA are applied to the adjusted S* matrices. Ratios of determinants 
are formed to test hypotheses about main effects and interactions by using Wilks' lambda criterion 1 (Equation 7.4). For the example, the determinants of the four matrices needed to  test the three 
hyp~theses (two main effect  and the interaction) are 

The source table for MANCOVA, analogous to that produced for MANOVA, for the sample 
data is in Table 7.6. 

One new item in this source table tha: is not in the MANOV.4 table of Section 7.4.1 is the vari- 
ance in the DVs due to the covariate. (With more than one covariate, there is a line for combined 
covariates and a line for each of the individual covariates.) As in ANCOVA, one degree of freedom 

T.A.BLE 7.6 Multivariate Analysis of Covariance of WRAT-R 
and WRAT-A Scores 

Source of Wilks' Multivariate 
Variance Lambda dfl dfi F 

Covariate 3348.5 2.00 10.00 3.549 13 

Treatment ,13772 2.00 10.00 44.1 1554"* 

Disability 25.526 4.00 22.00 4.92 1 12* 

Treatment by Disability ,90807 4.00 22.OU 0.15997 



for error 1 4  ~~aeci for each covarlate .;o that df, - and r of Equat~on 7.5 are modifiecl. For klANCOV,-\. 
then, 

s = min(1) + q, dfeffect) (7.11) 

where q is the number of covariates and all other terms are defined as in Equation 7.7. 

Approximate F is used to test the significance of the covariate-DV relationship as well as main 
effects and interactions. If a significant relationship is found, Wilks' lambda is used to find the effect 
size as shown in Equations 7.6 or 7.9. 

7.5 Some Important Issues 

7.5.1 MANOVA vs. ANOVAs 

MANOVA works best with highly negatively correlated DVs and acceptably well with moderately 
correlated DVs in either direction (about 1.61 ). For example, two DVs, such as time to complete a 
task and number of errors, might be expected to have a moderate negathe correlation and are best 
analyzed through MANOVA. MANOVA is less attractive if correlations among DVs are very highly 
positive or near zero (Woodward et al., 1990). 

Using very highly positively correlated DVs in MANOVA is wasteful. For example, the effects 
of the Head Start program might be tested in a MANOVA with the WISC and Stanford-Binet as DVs. 
The overall multivariate test works acceptably well, but after the highest priority DV is entered in 
stepdown a.n.a!ysis, tests of remaining DVs are ambiguous. Once that DV beconies a covariate, there 
is no variance remaining in the lower priority DVs to be related to IV main effects or interactions. I 

Univariate tests also are highly misleading, because they suggest effects on different behaviors when I 

actually there is one behavior being measured repeatedly. Better strategies are to pick a single DV 
(preferably the most reliable) or to create a composite score (an average if the DVs are commensu- 
rate or a principal component score if they are not) for use in ANOVA. 

MANOVA also is wasteful if DVs are uncorrelated-naturally, or if they are factor or compo- 
nent scores. The multivariate test has lower power than the univariate and there is little difference 
between univariate and stepdown results. The only advantage to MANOVA over separate ANOVAs 
on each DV is control of familywise Type I error. However, this error rate can be controlled by apply- 
ing a Bonferroni correction (cf. Equation 7.12) to each test in a set of separate ANOVAs on each DV, 
although that could potentially result in a more conservative analysis than MANOVA. 

Sometimes there IS a mix of correlated and uncorrelated DVs. For example, there may be a set 
of moderately correlated DVs related to performance on a task and another set of moderately corre- 
lated DV5 related to attitudes. Separate MANOVAs on each of the two sets of moderately correlated 
DVs are likely to produce the 'most interesting iflterpretations as long as appropriate adjustments are 
made for farn~lywise error rate for the mult~ple MANOVA\. Or one \et rn~ght serve a\ covarlate\ In 
a single MANCOVA. 



7.5.2 Criteria for Statistical Inference 

Several multivariate statistics are available in MANOVA programs to test significance of nuin effects 
and interactions: Wilks' lambda, Hotelling's trace criterion, Pillai's criterion, as well as Roy's gcr cri- 
terion. When an effect has mly two levels (s = 1, 1 df in the uaivariate sense), the F tests for Wilks' 
lambda,' Hotelling's trace, and Pillai's criterion are identical. And usually when an effect has more 
than two levels ('s > 1 and df > 1 in the univariate sense), the F values are slightly different, but either 
all three statistics are signiticant or all are nonsignificant. Occasionally, however, some of the statis- 
tics are significant while others are not, and the researcher is left wondering which result to believe. 

When there is only one degree of freedom for effect, there is only one way to combine the DVs 
to separate the two groups from each other. However, when there is more than one degree of freedom 
for effect, there is more than one way to combine DVs to separate groups. For example, with three 
groups, one way of combining DVs may separate the first group from the other two while the second 
way of combining DVs separates the second group from the third. Each way of combining DVs is a 
dimension along which groups differ (as described in gory detail in Chapter 9) and each generates a 
statistic. 

When there is more than one degree of freedom for effect, Wiiks' lambda, Ho:el!ing's trace cri- 
terion, and Pillai's criterion pool the statistics from each dimension to test the effect; Roy's gcr cri- 
terion uses only the first dimension (in our example, the way of combining DVs that separates the 
first group from the other two) and is the preferred test statistic for a few researchers (Harris, 200 1). 
Most researchers, however, use one of the pooled statistics to test the effect (Olson, 1976). 

Wilks' lambda, defined in Equation 7.4 and Section 7.4.1, is a likelihood ratio statistic that 
tests the likelihood of the data under the assumption of equal population mean vectors for all groups 
against the iikelihood under the assumption that population mean vectors are identical to those of the 
sample mean vectors for the different groups. Wilks' lambda is the pooled ratio of error variance to 
effect variance plus error variance. Hotelling's trace is the pooled ratio of effect variance to error 
variance. Pillai's criterion is simply the pooled effect variances. 

Wilks' lambda, Hotelling's trace, and Roy's gcr criterion are often more powerfui than Piiiai's 
criterion when there is more than one dimension but the first dimension provides most of the sepa- 
ration of groups; iheji are !ess powerfu! wher? separztion of groups is distributed over dimensions. 
But Pillai's criterion is said to be more robust than the other three (Olson, 1979). As sample size 
decreases, unequai n's appear, and the assumption of nomogeneity of variance-covariance matrices 
is violated (Section 7.3.2.2), the advantage of Pillai's criterion in terms of robustness is more impor- 
tant. When the research design is less than ideal, then Pillai's criterion is the criterion of choice. 

In terms of availability, all the MANOVA programs reviewed here provide Wilks' lambda, as 
do most research reports, so that Wilks' lambda is the criterion of choice unless there is reason to use 
Pillai's criterion. Programs differ in the other statistics provided (see Section 7.7). 

In addition to potentially conflicting significance tests for multivariate F is the irritation of a 
nonsignificant multivariate F but a significant univariate F for one of the DVs. If the researcher mea- 
sures only one DV-the right one-the effect is significant, but because more DVs are measured, it 
is not. Why doesn't MANOVA combine DVs with a weight of 1 for the significant DV and a weight 
of zero for the rest? In fact, MANOVA comes close to doing just that, but multivariate F is often not 
as poweti~~l as univariate or stepdown F and significance can be lost. If this happens, about the best 
one can do is report the nonsignificant multivariate F and offer the univariate andlor stepdown result 
as a guide to future research. 
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7.5.3 Assessing DVs 

When a main effect or interaction is significant in MANOVA, the researcher has usually planned to 
pursue the finding to discover which DVs are affec.ted. But the problems of assessing DVs in signif- 
icant multivariate effects are similar to the problems of assigning importance to IVs in multiple 
regression (Chapter 5).  First, there are multiple significance tests so some adjustment is necessary 
for inflated Type I error. Second, if DVs are uncorrelated, there is no ambiguity in assignment of vari- 
ance to them, but if DVs are correlated, assignment of overlapping variance to DVs is problematical. 

73.3.1 Univariate F 

If pooled within-group correlations among DVs are zero (and they never are unless they are formed 
by principal components analysis), univariate ANOVAs, one per DV, give the relevant information 
about their importance. Using ANOVA for uncorrelated DVs is analogous to assessing importance of 
IVs in multiple regression by the magnitude of their individual correlations with the DV. The DVs 1 

that have significant univariate Fs are the important ones, and they can be ranked in importance by ! 
effect size. However, because of inflated Type I error rate due to multiple testing, more stringent 
alpha levels are required. 

Because there are multiple ANOVAs, a Bonferroni type adjustment is made for inflated Type 
I error. The researcher assigns alpha for each DV so that alpha for the set of DVs does not exceed 
some critical value. 

a = I - (1 - cu,)(l - a,) - ...( 1 - ap) (7.12) 

The Type I error rate (a) is based on the error rate for testing the first DV (a,), the sec- 
ond DV (az), and all other DVs to the pth, or last, DV (a,,). 

A!! the alphas c ~ n  be set at the same lwei, or more important D'v7s can be given more liberal I 

alphas. For example, if there are four DVs and a for each DV is set at .01, the overall alpha level I 
according to Equation 7.12 is .039, acceptably below .05 overall. Or if a is set at .02 for 2 DVs, and I 

at .OO 1 for the other 2 DVs, overall cu is .042, also below .05. A close approximation if all ai are to be 
the same is: 

where  if,,, is the family-wise error rate (e.g., .05) andp is the number of tests 
Correlated DVs pose two problems with univariate Fs. First, correlated DVs measure overlap- 

ping aspects of the same behavior. To say that two of them are both "significant" mistakenly suggests 
that the IV affects two different behaviors. For example, if the two DVs are Stanford-Binet IQ and 
WISC IQ, they are so highly correlated that an IV that affects one surely affects the other. The sec- 
ond problem with reporting univariate Fs for correlated DVs is inflation of Type I error rate; with 
correlated DVs, the univariate Fs are not independent and no straightforward adjustment of the error 
rate is possible. In this situation, reporting univariate ANOVAs violates the spirit of MANOVA. 
However, this is still the most common method of interpreting the results of a MANOVA. 

Although reporting univariate F for each DV is a simple tactic, the report should also contain 
the pooled within-group correlations among DVs so the reader can make necessary interpretive 



adjustment\. The pooled ~.~thln-group correlat~on matrlr I \  prob~ded by SPSS hIANOV,L\ 'lnd SAS 
GLM. 

In the example of Table 7.2, there is a s~gniticant multivariate effect of treatment (and of dis- 
ability, although, as previously noted, it is not interesting in this example). It is appropriate to ask 
which of the two DVs is affected by treatment. Univariate ANOVAs for WRAT-R and WRAT-A are in 
Tables 7.7 and 7.8, respectively. The pooled within-group correlation between WRAT-R and WRAT- 
A is ,057 with 12 df. Because the DVs are relatively uncorrelated, univariate F with adjustment of a: 
for multiple tests might be considered appropriate (but note the stepdown results in the following sec- 
tion). There are two DVs, so each is set at alpha .025.9 With 2 and 12 df, critical F is 5.10; with 1 and 
12 df, critical F is 6.55. There is a main effect of treatment (and disability) for both WRAT-R and 
WRAT-A. 

t 7.5.3.2 Roy-Bargmann Stepdown Analysis l o  

1 The problem of correlated univariate F tests with correlated DVs is resolved by stepdown analysis 
(Bock, 1966; Bock & Haggard, 1968). Stepdown analysis of DVs is analogous to testing the impor- 
tance of IVs in multiple regression by sequentiai analysis. Priorities are assigned to DVs according 

! to theoretical or practical considerations.' ' The highest-priority DV is tested in univariate ANOVA, 

TABLE 7.7 Univariate Analysis of Variance of 
WRAT-R Scores 
- 

Source SS d f MS F 

TABLE 7.8 Univariate Analysis of Variance of WRAT-A Scores 

Source SS d f MS F 

'when the design is very complicated and generates many main effects and interactions, further adjustment of a is necessary 
in order to keep overall n under. I5 or so, across the ANOVAs for the DVs. 

'OStepdown analysis can he run in lieu of MANOVA where a cigniticant stepdown F is interpreted as a significant multivari- 
ate effect for the main effect or interaction. 

"It is also possible to assign priority on the basis of statistical criteria such as univariate F. but the analysis suffers all the prob- 
lems inherent in stepwise regression, discussed in Chapter 5. 



272 C H A P T E R  7 

with appropriate adjustment of alpha. The rest of the DVs are tested in a series of ANCOVAs; each 
successive DV is tested with higher-priority DVs as covariates to see what, if anything, it adds to the 
combination of DVs already tested. Because successive ANCOV4s are independent, adjustment for 
inflated Type I error due to multiple testing is the same as in Section 7.5.3.1. 

For the example, we assign WRAT-R scores higher priority since reading problems represent. 
the most common presenting symptoms for learning disabled children. To keep overall alpha below 
.05, individual alpha levels are set at .025 for each of the two DVs. WRAT-R scores are analyzed 
through univariate ANOVA, as displayed in Table 7.7. Because the main effect of disability is not 
interesting and the interaction is not statistically significant in MANOVA (Table 7.2), the only effect 
of interest is treatment. The critical value for testing the treatment effect (6.55 with 1 and 12 df at 
a: = .025) is clearly exceeded by the obtained F of 46.1225. 

WRAT-A scores are analyzed in ANCOVA with WRAT-R scores as covariate. The results of 
this analysis appear in Table 7.9.12 For the treatment effect, critical F with 1 and 11 df at cr = .025 is 
6.72. This exceeds the.obtained F of 5.49. Thus, according to stepdown analysis, the significant 
effect of treatment is represented in WRAT-R scores, with nothing added by WRAT-A scores. 

I 
! 

Note that WRAT-A scores show significant univariate but not stepdown E Because WRAT-A 
scores are not significant in stepdown analysis does not mean they are unaffected by treatment but 
rather that no unique variability is shared with treatment after adjustment for differences in WRAT-R. 
This result occurs despite the relatively low correlation between the DVs. 

This procedure can be extended to sets of DVs through MANCOVA. If the DVs fall into cate- 
gories, such as scholastic variables and attitudinal variables, one can ask whether there is any change 
in attitudinal variables as a result of an IV, after adjustment for differences in scholastic variables. The 
attitudinal variables serve as DVs in MANCOVA while the scholastic variables serve as covariates. 

7.5.3.3 Using Discriminant Analysis 

Discriminant analysis, as discussed more fully in Chapter 9, provldes information useful in assess- l 

ing DVs (DVs are predictors in the context of discriminant analysis). A structure (loading) matrix is i 
produced which contains correlations between the linear combination of DVs that maximizes treat- 

I 
ment differences and the DVs themse!ves. DVs that correlate highly with the combination are more 
important to discrimination among groups. 

TABLE 7.9 Analysis of Covariance of WRAT-A 
Scores, with WRAT-R Scores as the Covariate 

Source SS d f MS F 

Covariate 1.7665 1 1.7665 0.036 1 
D 538.3662 2 269.1831 5.5082 
T 268.308 1 1 268.3081 5.4903 
DT 52.1344 2 26.0672 0.5334 
s(DT) 537.5668 11 48.8679 

"A full stepdown analysis IS produced as an optlon through SPSS MANOVA. For illustratton. however, i t  is helpful to show 
how the analysis develops. 



Discrinlinant analysis also can be u:;ed to test each o f  the DVs in the standard multiple regres- 
sion sense; the effect on each DV is assessed after adjustment for all other DVs. That is, each DV is 
assessed as if it were the last one to enter an equation. This is demonstrated in Section 9.6.4. 

7.5.3.4 Choosing among Strategies for Asessitzg DVs 

You may find the procedures of Sections 9.6.3 and 9.6.4 more useful than univariate or stepdown F 
for assessing DVs when you have a significant multivariate main effect with more than two levels. 
Similarly, you may find the procedures described in Section 8.5.2 helpful for assessment of DVs if 
you have a significant multivariate interaction. 

The choice between univariate and stepdown F is not always easy, and often you want to use 
both. When there is no correlation among the DVs, univariate F with adjustment for Type I error is 
acceptable. When DVs are correlated, as they almost always are, stepdown F is preferable on grounds 
of statistical purity, but you have to prioritize the DVs and the results can be difficult to interpret. 

If DVs are correlated and there is some compelling priority ordering of them, stepdown analy- 
sis is clearly called for, with univariate Fs and pooled within-cell correlations reported simply as sup- 
plemental information. For significant lower-priority DVs, marginal ar?d/nr ce!! mems adjusted for 
higher-priority DVs are reported and interpreted. 

If the DVs are correlated but the ordering is somewhat arbitrary, an initial decision in favor of 
stepdown analysis is made. If the pattern of results from stepdown analysis makes sense in the light of 
the pattern of univariate results, interpretation takes both patterns into account with emphasis on DVs 
that are significant in stepdown analysis. If, for example, a DV has a significant univariate F but a non- 
significant stepdown F, interpretation is straightforward: The variance the DV shares with the IV is 
already accounted for through overlapping variance with one or more higher-priority DVs. This is the 
interpretation of WRAT-A in the preceding section and the strategy followed in Section 7.6. 

But if a DV has a nonsiznificant univariate F and a significant stepdown F, interpretation is 
much more difficult. In the presence oE higher-order DVs as covariates, the DV suddenly takes on 
"importance." In this case, interpretation is tied to the context in wnich the D'v's entered the stepdown 
analysis. It may be worthwhile at this point, especially if there is only a weak basis for ordering DVs, 
to forgo evaluation of statistical significance of DVs and resort to simple description. After finding a 
significant multivariate effect, unadjusted marginal andlor cell means are reported for DVs with high 
univariate Fs but significance levels are not given. 

An alternative to attempting interpretation of either univariate or stepdown F is interpretation of 
loading matrices in discriminant analysis, as discussed in Section 9.6.3.2. This process is facilitated 
when SPSS MANOVA or SAS GLM is used because information about the discriminant functions is 
provided as a routine part of the output. Alternatively, a discriminant analysis may be run on the data. 

Another perspective is whether DVs differ significantly in the effects of IVs on them. For 
example: Does treatment affect reading significantly more than it affects arithmetic? Tests for con- 
trasts among DVs have been developed in the context of meta-analysis with its emphasis on com- 
paring effect sizes. Rosenthal(2001) demonstrates these techniques. 

7.5.4 Specific Comparisons and Trend Analysis 

When there are more than two levels in a significant multivariate main effect and when a DV is 
important to the main effect, the researcher often wants to perform specific comparisons or trend 
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analysis of the DV to pinpoint the source of the significant difference. Similarly. when there is a sig- 
nificant multivariate interaction and a DV is important to the interaction. the researcher follows up 
the finding with comparisons on the DV. Specific comparisons may also be done on multivariate 
effects. These are often less interprstable than comparisons on individual DVs, unless DVs are all 
scaled in the same direction, or are based on factor or principal component scores. Review Sections. 
3.2.6,6.5.4.3, and 8.5.2 for examples and discussions of comparisons. The issues and procedures are 
the same for individual DVs in MANOv4 as in ANOVA. 

Comparisons are either planned (performed in lieu of omnibus F) or post hoc (performed after 
omnibus F to snoop-the data). When comparisons are post hoc, an extension of the Scheffk procedure 
is used to protect against inflated Type I error due to multiple tests. The procedure is very conserva- 
tive but allows for an unlimited number of comparisons. Following Scheffk for ANOVA (see Section 
3.2.6), the tabled critical value of F is multiplied by the degrees of freedom for the effect being tested 
to produce an adjusted, and much more stringent, E If marginal means for a main effect are being 
contrasted, the degrees.of freedom are those associated with the main effect. If cell means are being 
contrasted, our recommendation is to use the degrees of freedom associated with the interaction. 

Various types of contrasts on individual DVs are demonstrated in Sections 8.5.2.1 and 8.5.2.3. 
'The difference between setting up contrasts on individual DVs and setting up contrasts on the combi- 
nation is that all DVs are included in the syntax. Table 7.10 shows syntax for trend analysis and user- 
specified orthogonal contrasts on the main effect of DISABLTY for the small-sample example. The 
coefficients illustrated for the orthogonal contrasts actually are the trend coefficients. Note that SPSS 
GLM requires fractions in part of the LMATRIX command to produce the right answers. 

Use of this syntax also provides univariate tests of contrasts for each DV. None of these con- 
trasts are adjusted for post hoc analysis. The usual corrections are to be applied bminimize inflated - 
Type I error rate unless comparisons are planned (cf. Sections 3.2.6.5, 6.5.4.3, and 8.5.2). 

7.5.5 Design Compiexity 

When between-subjects designs have more than two IVs, extension of MANOVA is straightforward 
as iong as sample sizes are equal within each cell of the design. The partition of variance continues 
to follow ANOVA, with a variance component computed for each main effect and interaction. The 
pooled variance-covariance matrix due to differences among subjects within cells serves as the sin- 
gle error term. Assessment of DVs and comparisons proceed as described in Sections 7.5.3 and 7.5.4. 

Two major design complexities that arise, however, are inclusion of within-subjects IVs and 
unequal sample sizes in cells. 

7.5.5.1 Within-Subjects and Between- Within Designs 

The simplest design with repeated measures is a one-way within-subjects design where the same 
subjects are measured on a single DV on several different occaslons. The design can be complicated 
by addition of between-subjects IVs or more within-subjects IVs. Consult Chapters 3 and 6 for dis- 
cussion of some of the problems that arise in ANOVA with repeated measures. 

Repeated measures is extended to MANOVA when the researcher measures several DVs on sev- 
eral different occasions. The occasions can be viewed in two ways. In the traditional sense. occaslons 
is a within-subjects IV with as many levels as occasions (Chapter 3). Alternatively, each occasion can 



TABLE 7.10 Syntax for Orthogonal Comparisons and Trend Analysis 

Type of Comparison Program Syntax 

Orthogonal SPSS GLM 
GLM WRATR WRATA BY TREATMNT DISABLTY 

/ME:THOD = SSTY PE(3) 
/INTERCEPT = INCLUDE 
/CRITERIA = ALPHA(.05) 
ILMATRIX "LINEAR" DISABLTY 1 0 -1 

TREATMNT*DISABLTY 112 0 -112 112 0 -112 
JLMATRIX "QUADRATIC" DISABLTY 1 -2 1 

TREATMNT*DISABLTY 112 -212 112 112 -212 112 
/DESIGN = TREATMNT DISABLTY TREATMNThDISABLTY. 

SPSS MANOVA 
MANOVA WRATR WRATA BY TREATMNT (1 ,2) DISABLTY (1,3) 

/METHOD = UNIQUE 
/PARTITION (DISABLTY) 
/CONTRAST(DlSABLTY)=SPECIAL(l 1 1, 

1 0-1, 
1-2 1) 

/DESIGN = TRIEATMNT DISABLTY(1) 
DISABLTY(2) TREATMNT BY DISABLTY. 

SAS GLM PROC G1.M DATA=SASUSER. SS-MANOV; 
CLASS TREATMNT DISABLTY; 
MODEL WRATR WRATA = TREATMNT DISABLTY 
TREATMNT*DISABLTY; 
CONTRAST ' L I N E A R '  DISABLTY 1 0 -1; 
CONTRAST 'QUIADRATIC' DISABLTY 1 - 2  1; 
manova h = - a l l - / s h o r t ;  
r u n ;  

Section of Output 

Custom 
Hypothesis 
Tests: 

Multivariate Test 
Results 

EFFECT. . . 
DISABLTY ( 2 ) 

EFFECT. . . 
D I  SABLTY ( 1 ) 

MANOVA T e s t  
C r i t e r i a  .... 
N o  O v e r a l l  
l i n e a r  
( q u a d r a t i c )  
E f f e c t  

Name of Effect 

Wilks' 
Lambda 

Wilks ' 
Lambda 

W i  l k s '  
L a m b d a  
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TABLE 7.10 Continued 

Type of Section of Name of 
Comparison Program Syntax Output Effect 

. . - - .  --.- . ~ . . a . -  ,". . 
Trend SPSS No special syntax; done as any other user- EFFECT. .. Wil ks' 
Analysis GLM specified contrasts. DISABLTY(2) Lambda 

SPSS MANOVA 
EFFECT. . . 

MANOVA WRATR WRATA BY TREATMNT(1,2) DISABLTy 
DISABLTY(1,3) 

/METHOD = UNIQUE 
/PARTITION (DISABLTY) 
/CONTRAST(DISABLTY)= 

POLYNOMIAL (1,2,3) 
/DESIGN = TREATMNT DISABLTY(1) 

DISABLTY (2) 
TREATMNT BY DISABLTY. 

be treated as a separate DV--one DV per occasion (Section 7.2.8). In this latter view, if there is more 
than one DV measured on each occasion, the design is said to be doubly multivariate-multiple DVs 
are measured on multiple occasions. (There is no distinction between the two views when there are 
only two levels of the within-subjects IV.) 

Section 8.5.3 discusses a doubly-multivariate analysis of a small data set with a between- 
subjects 1%' (PROGRAM), a within-subjects IV (MONTH), and two DVs (WTLOSS and ESTEEM), I 
both measured three times. A complete example of a doubly-multivariate design is in Section 8.6.2. 1 

It also is possible to have multiple DVs, but treat the within-subjects IV univariately. This is I 

useful when (1) there are only two levels of the within-subjects IV, (2) there is no concern with vio- l 

lation of sphericity (Sections 3.2.3 and 8.5.1), or (3) a trend analysis is planned to replace the 
omnibus tests of the within-subjects IV and any interactions with the within-subjects IV. All 
programs that do doubly-multivariate analysis also show univariate results, therefore the syntax is 
the same as that used in Section 8.5.3. 

7.5.5.2 Unequal Sample Sizes 

When cells in a factorial ANOVA have an unequal number of scores, the sum of squares for effect 
plus error no longer equals the total sum of squares, and tests of main effects and interactions are cor- 
related. There are a number of ways to adjust for overlap in sums of squares (cf. Woodward & Over- 
all, 1975), as discussed in some detail in Section 6.5.4.2, particularly Table 6.10. Both the problem 
and the solutions generalize to MANOVA. 

All the MANOVA programs described in Section 7.7 adjust for unequal n. SPSS MANOVA 
offers both Method 1 adjustment (METHOD = UNIQUE),  which is default. and Method 3 adjust- 
ment (METHOD = SEQUENTIAL). Method 3 adjustment with survey data through SPSS 
MANOVA is shown in Section 7.6.2. Method 1--called SSTYPE(3)-is the default among four 
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options I n  SPSS GLiCI. 111 SAS GLM. Method 1 (called T Y P E  I I I or T Y P E  I V )  al\o i \  thc default 
among four optlons ava~lable. 

7.6 Complete Examples of Multivariate 
Analysis of Variance and Covariance 

In the research described in Appendix B, Section B. 1, there is interest in whether the means of sev- 
eral of the variables differ as a function of sex role identification. Are there differences in self- 
esteem, introversion-extraversion, neuroticism, and so on associated with a woman's masculinity 
and femininity? Files are MANOVA.". 

Sex role identification is defined by the masculinity and femininity scales of the Bem Sex Role 
Inventory (Bem, 1974). Each scale is divided at its median to produce two levels of masculinity (high 

! 
and low), two levels of femininity (high and low), and four groups: Undifferentiated (low femininity, 
low masculinity). Feminine (high femininity, low masculinity), Masculine (low femininity, high mas- 
cfi!inity), and -4ndmgynn~is (high femininity, high mac;culinity). The design produces a main effect of 
masculinity, a main effect of femininity, and a masculinity-femininity interaction.I3 

DVs for this analysis are self-esteem (ESTEEPvfj, internal versus external locus of control (CON- 
TROL), attitudes toward women's role (ATTROLE), socioeconomic level (SEL2), introversion- 
extraversion (INTEXT), and neuroticism (NEUROTIC). Scales are coded so that higher scores gener- 
ally represent the more "negative" trait: low self-esteem, greater neuroticism, etc. 

Omnibus MANOVA (Section 7.6.2) asks whether these DVs are associated with the two TVs 
(femininity and masculinity) or their interaction. The Roy-Bargmann stepdown analysis, in con- 
junction with the univariate F values, allows us to examine the pattern of relationships between DVs 
and each IV. 

In a second cxample (Section ?.6.3), MANCOV,4 is performed with SEL2, CONTROL, and 
ATTROLE used as covariateb and ESTEEM, INTEXT, and NEUROTIC used as DVs. The research 

I question is whether the three personality DVs vary as a function of sex role identification (the two 
IVs and their interaction) after adjusting for differences in socioeconomic status, attitudes toward 
women's role, and beliefs regarding locus of control of reinforcements. 

7.6.1 Evaluation of Assumptions 

Before proceeding with MANOVA and MANCOVA, we must assess the variables with respect to 
practical limitations of the techniques. 

7.6.1.1 Unequal Sample Sizes and Missing Data 

SPSS FREQUENCIES is run with SORT and SPLIT FILE to divide cases into the four groups. Data 
and distributions for each DV within each group are inspected for missing values, shape, and vari- 
ance (see Table 7.1 1 for output on the CONTROL variable for the Feminine group). The run reveals 
the presence of a case for which the CONTROL score is missing. No datum is missing on any of the 

:'Some would argue with the wisdom of considering masculinity and femininity separate IVs, and of perform~ng a median 
split on them to create groups. This example is used for didactic purposes. 



13 TABLE 7.11 Syntax and Selected SPSS FREQUENCIES Output for MANOVA Variables; 
4 
00 Split by Group 

MISSING VALUES CONTROL (0) 
SORT CASES BY ANDRM. 
SPLIT FILE 
SEPARATE BY ANDRM. 

FREQUENCIES 
VARIABLES=ESTEEM CONTROL ATTROLE S E U  INTEXT NEUROTIC IFORMAT NOTABLE ' 

/STATISTICS=STDDEV VARIANCE MINIMUM MAXIMUM MEAN SKEWNESS SESKEW KURTOSIS 
SEKURT 
HISTOGRAM NORMAL 
/ORDER=ANALYSIS. 

Frequencies Groups4 = Feminine 
Statisticsa 

aGroups-4 = Feminine 

N Valid 
Missing 

Mean 
Std. Devlation 
Varlance 
Skewness 
Std. Error of Skewness 
Kurtos~s 
Std. Error of Kurtosis 
M~nimum 
Max~mum 

Locus of 
control 

1 72 
1 

I 6.7733 
1.26620 

1.603 
.541 
1 8 5  

-.381 
.368 
5.00 

10.00 

Self 
esteem 

173 
0 

16.491 3 
3.48688 

12.158 
.471 
1 8 5  
.651 
.367 
9.00 

28.00 

Attitude 
toward role 
of women 

173 
0 

37.0520 
6.28145 
39.457 

.076 

.I85 
-.204 

.367 
22.00 
55.00 

Socio-economic 
level 

173 
0 

40.402643 
24.659579 

608.095 
-.235 

.I85 
-1.284 

.367 
.OOOOO 

81 .OOOOO 

Introversion- 
extroversion 

173 
0 

1 1.3266 
3.6621 9 

13.41 2 
-.327 

.I85 
-.335 

.367 
2.00 

20.00 

Neuroticlsm 

173 
0 

8 9653 
5 10688 
26 080 

238 
185 

- 689 
367 
00 

23 00 
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TABLE 7.1 1 Continued 

Histogram Locus of control 
Groups-4. Fem~nine 

Locus of control 

Mean = 6.7733 
Std. Dev. = 1.2662 
N = 172 

other DVs for the 369 women who were administered the Bem Sex Role Inventory. Deletion of the 
case with the missing value, then, reduces the available sample size to 368. 

Sample sizes are quite different in the four groups: There are 7 1 Undifferentiated, 172 Ferni- 
nine, 36 Masculine, and 89 Androgynous women in the sample. Because it is assumed that these 
differences in sample size reflect real processes in the population, the sequential approach to adjust- 
ment for unequal n is used with FEM (femininity) given priority over MASC (masculinity), and 
FEM by MASC (interaction between femininity and masculinity). 

The sample size of 368 includes ever 35 cases for each cell of the 2 x 2 between-subjects design, 
more than the 20 df for error suggested to assure multivariate normality of the sampling distribution 
of means, even with unequal sample sizes; there are far more cases than DVs in the smallest cell. Fur- 
ther. the distributions for the fill1 run (of which CONTROL in Table 7.11 is a part) produ- r e  fie came 
for alarm. Skewness is not extreme and, when present, is roughly the same for the DVs. 

Two-tailed tests are automatically performed by the computer programs used. That is, the F 
test looks for differences between means in either direction. 

7.6.1.3 Linearity 

The full output for the run of Table 7.11 reveals no cause for worry about linearity. All DVs in each 
group have reasonably balanced distributions so there is no need to examine scatterplots for each pair 
of DVs within each group. Had scatterplots been necessary, SPSS PLOT would have been used with 
the SORT and SPLIT FILE syntax in Table 7.11. 

7.6.1.4 Outliers 

No univariate outliers were found using a criterion : = / 3.3 / (a = ,001) with the minimum and 
maximum values in the full output of Table 7.1 1. SPSS REGRESSION is used with the split file in 



280 C H A P T E R  7 

place to check for niultivariate outliers within each of the four proup  iTuble 7.12). The RESIDUALS= 
OUTLIERS(MAHAL) instruction produces the 10 most outlying cases for each of the groups. With six 
variables and a criterion a = .001, critical x 2  = 22.458; no multivariate outliers are found. 

7.6.1.5 Homogeneity of Variance-Covariance Matrices 

As a preliminary check for robustness, sample variances (in the full run of Table 7.11) for each DV 
are compared across the four groups. For no DV does the ratio of largest to smallest variance 
approach 10: 1. As a matter of fact, the largest ratio is about 1.5: 1 for the Undifferentiated versus 
Androgynous groups on CONTROL. 

Sample sizes are widely discrepant, with a ratio of almost 5: 1 for the Feminine to Masculine 
groups. However, with very small differences in variance and two-tailed tests, the discrepancy in sarn- 

TABLE 7.12 Mahalanobis Distance Values for Assessing Multivariate Outliers 
(Syntax and Selected Portion of Output from SPSS REGRESSION) 

REGRESSION 
/MISSING LISTWISE 
/STATISTICS COEFF OUTS R ANOVA 
/CRITERIA=PIN(.05) POUT(.10) 
/NOORIGIN 
/DEPENDENT CASENO 
/METHOD=ENTER ESTEEM CONTROL ATTROLE SEL2 INTEXT NEUROTIC 
/RESIDUALS=OUTLIERS(MAHAL). 

Regression 

Groups-4 = Undifferentiated Groups-4 = Masculine 

Outlier Statisticsalb Outlier Statisticsatb 

aDependent Variable: CASENO 
bGroups-4 = Undifferentiated 

aDependent Variable: CASENO 
bGroups-4 = Masculine 

Statistic -- 
14.975 
14.229 
11.777 
11.577 
11.371 
10.042 
9.378 
9.352 
9.31 8 
8.704 

Mahal. Distance 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Case 
Number 

Mahal. Distance 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
t 

Case 
Number 

277 
276 
249 
267 
25 1 
253 
246 
27 1 
278 
273 

32 
71 
64 
5 

41 
37 
55 
3 
1 

25 

Statistic 

14.294 
11.773 
11.609 
10.993 
9.175 
8.276 
7.984 
7.91 7 
7.406 
7.101 

L 
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T.4BLE 7.12 Continued 

Groups-4 = Feminine Groups-4 = Androgynous 

Outlier Statisticsalb Outlier Statisticsayb 
" .*. . *, %.%.A, ~ - ,  . .,* , . 

aDependent Variable: CASENO aDependent Variable: CASENO 
bGroups-4 = Ferninme bGroups-4 = Androgynous 

ple sizes does not invalidate use of MANOVA. The very sensitive Box's M test for homogeneity of 
dispersion matrices (performed through SPSS MANOVA as part of the major analysis in Table 7.15) 
produces F(63. 63020) = 1.07, p > .05, supporting the conclusion of homogeneity of variance- 
covariance matrices. 

7.6.1.6 Homogeneity o j  Regression 

Because Roy-Bargmann stepdown analysis is planned to assess the importance of DVs after 
MANOVA, a test of homogeneity of regression is necessary for each step of the stepdown analysis. 
Table 7.1 3 shows the SPSS MANOVA syntax for tests of homogeneity of regression where each DV, 
in turn, serves as DV on one step and then becomes a covariate on the next and all remaining steps 
(the split file instruction first is turned off). 

Table 7.13 also contains output for the last two steps where CONTROL serves as DV with 
ESTEEM, ATTROLE, NEUROTIC, and INTEXT as covariates, and then SEL2 is the DV with 
ESTEEM, ATTROLE, NEUROTIC, INTEXT, and CONTROL as covariates. At each step, the rele- 
vant effect is the one appearing last in the column labeled Source of Variation, so that for SEL2 
the F value for homogeneity of regression is F(15, 344) = 1.46, p > .Ol. (The more stringent cutoff 
is used here because robustness is expected.) Homogeneity of regression is established for all steps. 

For MANCOVA, an overall test of homogeneity of regression is required, in addition to step- 
down tests. Syntax for all tests is shown in Table 7.14. The ANALYSIS sentence with three DVs spec- 
ifies the overall test, while the ANALYSIS sentences with one DV each are for stepdown analysis. 
Output for the overall test and the last stepdown test is also shown in Table 7.14. Multivariate output is 
printed for the overall test because there are three DVs; univariate results are given for the stepdown 
tests. All runs show sufficient homogeneity of regression for this analysis. 
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TABLE 7.13 'Test for Homogeneity of Regression for hIANOY4 Stepdown Analysis (Syntax and 
Selected Output for Last Two Tests from SPSS iC1ANOV.A) 

SPLIT FILE 
OFF. 
MANOVA ESTEEM,ATTROLE,NEUROTIC,INTEXT,CONTROL,SEL2 BY FEM, MASC(1,2) 

/PRINT=SIGNtF(BRIEF) 
/ANALYSIS=ATTROLE 
IDESIGN=ESTEEM,FEM,MASC,FEM BY MASC, ESTEEM BY FEM BY MASC 
/ANALYSIS=NEUROTIC 
/DESIGN=ATTROLE,ESTEEM,FEM,MASC,FEM BY MASC, POOL(ATTROLE,ESTEEM) 

BY FEM + POOL(ATTROLE,ESTEEM) BY MASC + POOL(ATTROLE, 
ESTEEM)BY FEM BY MASC/ 

/ANALYSIS=INTEXT 
/DESIGN=NEUROTIC,ATTFiOLE,ESTEEM,FEM,MASC,FEM BY MASC, POOL(NEUROTIC, 

ATTROLE,ESTEEM) BY FEM + POOL(NEUROTIC,ATTROLE,ESTEEM) 
BY MASC + POOL(NEUROTIC,ATTROLE,ESTEEM) BY FEM BY MASC 

/ANALYSIS=CONTROL 
/DESIGN=INTEXT,NEUROTIC,ATTROLE,ESTEEM FEM,MASC FEM BY MASC, 

POOL(INTEXT,NEUROTIC,ATTROLE,ESTEEM) BY FEM + 
POOL(INTEXT,NEUROTIC,ATTROLE,ESTEEM) BY MASC + 
POOL(INTEXT,NEUROTIC,ATTROLE,ESTEEM) BY FEM BY MASC 

/ANALYSIS=SEL2 
/DESIGN=CONTROL,INTEXT,NEUROTIC,ATTROLE,ESTEEM,FEM,MASCFEM BY MASC, 

POOL(CONTROL,lNTEXT,NEUROTIC,ATTROLE,ESTEEM) BY FEM + 
POOL(CONTROL,INTEXT,NEUROTIC,ATTROLE,ESTEEM) BY MASC + 
POOL(CONTROL,INTEXT,NEUROTIC,ATTROLE,ESTEEM) BY FEM BY MASC. 

Tests of Significance for CONTROL using UNIQUE sums of squares 

Source of Variation S S DF MS F Sig of F 

WITHIN+RESIDUAL 
INTEXT 
NEUROTIC 
ATTROLE 
ESTEEM 
FEM 
MASC 
FEM BY MASC 
POOL(1NTEXT NEUROTIC 
ATTROLE ESTEEM) BY 
FEM + POOL(1NTEXT NE 
UROTIC ATTROLE ESTEE 
M) BY MASC + POOL(1N 
TEXT NEUROTIC ATTROL 
E ESTEEM) BY FEM BY 
MASC 
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TABLE 7.13 Continued 

Tests of Significance of SEL2 using UNIQUE sums of squares 

Source of Variation 

WITHIN+RESIDUAL 
CONTROL 
INTEXT 
NEUR 
ATT 
EST 
FEM 
MASC 
FEM BY MASC 
POOL (CONTROL. INTEXT 
NEUROTIC ATTROLE EST 
EEM) BY FEM + POOL (C 
ONTROL INTEXT NEUROT 
IC ATTROLE ESTEEM) B 
Y MASC + POOL(CONTR0 
L INTEXT NEUROTIC AT 
TROLE ESTEEM) BY FEM BY MASC ) 

TABLE 7.11 Tests of Homogeneity of Regression for MANCOVA 
and Stepdown Analysis (Syntax and Partial Output for Overall Tests 
and Last Stepdown Test from SPSS MANOVA) 

F Sig of F 

MP,N@?/A ESTEEM,ATTF?OLE,NEUROTIC.INTEXT,CONTROL,SEL2 BY FEM MASC(1,2) 
/PRINT=SIGNIF(BRIEF) 

/ANALYSIS=ESTEEM,INTEXT,NEUROTiG 
ICESIGN=CONTROL,,4TTROLE1SEL2,FEMh?MASC,FEM BY MASC, 

POOL(CONTROL,ATTROLE,SEL2) BY FEM + 
POOL!CONTROL,ATTROI.E,SEL2) BY MASC + 
POOL(CONTROL,ATTROLE,SEL2) BY FEM BY MASC 

/ANALYSIS=ESTEEM 
/DESIGN=CONTROL,ATTROLE,SEL2,FEM,MASC,FEM BY MASC, 

POOL(CONTROL,ATTROLE,SEL2) BY FEM + 
POOL(CONTROL,ATTROLE,SEL2) BY MASC + 
POOL(CONTROL,ATTROLE,SEL2) BY FEM BY MASC 

/ANALYSIS=INTEXT 
/DESIGN=ESTEEM,CONTROL,ATTROLE,SEL2,FEM,MASC,FEM BY MASC, 

POOL(ESTEEM,CONTROL,ATTROLE,SEL2) BY FEM + 
POOL(ESTEEM,CONTROL,ATTROLE,SEL2) BY MASC + 
POOL(ESTEEM,CONTROL,ATTROLE,SEL2) BY FEM BY MASC 

/ANALYSIS=NEUROTIC 
/DESIGN=INTEXT,ESTEEM,CONTROL,ATTROLE,SEL2,FEM,MASC7FEM BY MASC, 

POOL(INTEXT,ESTEEM,CONTROL,ATTROLE,SEL2) BY FEM+ 
POOL(INTEXT,ESTEEM7C0NTROL,ATTROLE,SEL2) BY MASC + 
POOL(INTEXT,ESTEEM,CONTROL,ATTROLE,SEL2) BY FEM BY MASC. 

(cor~r l r~~ led)  
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TABLE 7.14 Continued 

Multivariate Tests of Signific,ance 
Tests usins UNIQUE sums of squares and WITHIN+RESIDUAL error term 
Source of Variation Wilks Approx F Hyp. DF Error DF Sig of F 

CONTROL 
ATTROLE 
SEL2 
FEM 
MASC 
FEM BY MASC 
POOL ( CONTROL ATTROL 
E SEL2) BY FEM + .PO0 
L(CONTR0L ATTROLE SE 
L2) BY MASC + POOL(C 
ONTROL ATTROLE SEL2) 
BY FEM BY MASC 

Tests of Significance for NEUROTIC using UNIQUE sums of squares 
Source of Variation SS DF MS F Sig of F 

WITHIN+RESIDUAL 
INTEXT 
ESTEEM 
CONTROL 
ATTROLE 
SEL2 
FEN 
MASC 
FEM BY MASC 
POOL (INTEXT ESTEEM C 
ONTROL ATTROLE SEL2) 
BY FEM + POOL (INTEX 
T ESTEEM CONTROL ATT 
ROLE SEL2) BY MASC + 
POOL(1NTEXT ESTEEM 
CONTROL ATTROLE SEL2 
) BY ??EM BY MASC 

7.6.1.7 Reliability of Covariates 

For the stepdown analysis in MANOVA, all DVs except ESTEEM must be reliable because all act as 
iovariates. Based on the nature of scale development and data collect~on procedures. there is no 
reason to expect unreliability of a magnitude harmful to covariance analysis for ATTROLE, NEU- 
ROTIC, INTEXT, CONTROL, and SEL2. These same variables act as true or stepdown covariates 
in the MANCOVA analysis. 



The log-determinant of the pooled within-cells correlation matrix 1s found (through SPSS 
MANOVA syntax in Table 7.15) to be -.4336, yielding a determinant of 2.7 I .  This is sufticiently 
different from zero that multicollinearity is not judged to be a problem. 

7.6.2 Multivariate Analysis of Variance 

Syntax and partial output of omnibus MANOVA produced by SPSS MANOVA appear in Table 7.15. 
The order of IVs listed in the MANOVA statement together with METHOD=SEQUENTIAL sets up 

TABLE 7.15 Multivariate Analysis of Variance of Composite of DVs (ESTEEM, CONTROL, 
ATTROLE, SEL2, INTEXT, and NEUROTIC), as a Function of (Top to Bottom) FEMININITY by 
MASCULINITY Interaction, MASCULINITY, and FEMININITY (Syntax and Selected Output from 
SPSS MANOVA) . 

MANOVA ESTEEM,ATTROLE,NEUROTIC,INTEXT,CONTROL,SEL2 BY FEM,MASC(I ,2) 
/PRINT=SlGNIF(STEPDOWN), ERROR(COR), 

HOMOGENEITY(BARTLETT,COCHRAN:BOXM) 
/METHOD=SEQUENTIAL 
/DESIGN FEM MASC FEM BY MASC. 

EFFECT.. FEM BY MASC 
Multivariate Tests of Significance (S = 1, M = 2  , N = 1 7 8  1 / 2 )  

Test Name Value Exact F Hypoth. DF Error DF Sig. of F 

~illais .00816 .49230 6.00 359 .00  .814  
Hotellings .00823 .49230 6 .00  359 .00  .814  
Wilks .99184  .49230 6 .00  3 5 9 . 0 0  .814 
Roys .00816 
Note.. F statistics are exact. 
EFFECT.. MASC 
Multivariate Tests of Significance (S = 1, M = 2  , N = 1 7 8  1 / 2 )  

Test Name Value Exact F Hypotk. DF Error DF Sig. of P 

Pillais .24363 19 .27301  6.00 359 .00  . O O O  
Hotellings . 3 2 2 1 1  1 9  - 2 7 3 0 1  6.00 359 .00  . O O O  
Wilks .75637 19 .27301  6.00 359 .00  . O O O  
Roys .24363  
Note.. F statistics are exact. 

EFFECT.. FEM 
Multivariate Tests of Significance (S = 1, M = 2  , N = 178  1 / 2 )  

Test Name Value Exact F Hypoth. DF Error DF S i g :  of F 

Pillais . 0 8 1 0 1  5.27423 6.00 359 .00  - 0 0 0  
Hotellings .08815  5.27423 6.00 359 .00  . O @ O  
Wilks . 91899  5 .27423  6 .00  359 .00  .OD0 
Roys . 0 8 1 0 1  
Note.. F statistics are exact. 
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the priority for testing FEbl before MI\SC' i n  this uneclnal-11 design. Resultc are reported for FEhl by 
MASC. MASC, and FEM. in turn. Tests are reported out in  order of adjustrncnr w h e r e  FEhI by 
MASC is adjusted for both MASC and FEM, and MASC is adjusted for FEM. 

Four multivariate statistics are reported for each effect. Because there is only one degree of 
freedom for each effect, three of the tests-Pillai's, Hotelling's, and Wi1ks'-produce the same F . ' ~  
Both main effects are highly significant, but there is no statistically significant interaction. If desired, 
effect size for the composite DV for each main effect is found using Equation 7.8 (shown in SPSS 
MANOVA as Pillai's value) or 7.9. In this case. full and partial r12 are the same for each of the three 
effects because s =' 1 for all of them. Confidence limits for effect siz,es are found by entering values 
from Table 7.15 (Exact F, Hypoth . DF, Error DF, and the percentage for the desired confidence 
interval) into Smithson's (2003) NoncF.sav and running it through NoncF3.sps. Results are added to 
NoncF.sav, as seen in Table 7.16. (Note that partial q2 also is reported as r2.) Thus, for the main 
effect of FEM, partial v12 = .08 with 95% confidence limits from .02 to .13. For the main effect of I 

1 

MASC, partial q2 = .24 with 95% confidence limits from .16 to .30. For the interaction, partial 
rl2 = .O1 with 95% confidence limits from .OO to .02. 

Because omnibus MANOVA shows significant main effects, it is appropriate to investigate 
I j 

furt'ner the nature of the reiationships among the IVs and DVs. Correlations, univariate Fs, and step- 
down Fs help clarify the relationships. 

The degree to which DVs are correlated provides information as to the independence of behav- 
iors. Pooled within-cell correlations, adjusted for IVs, as produced by SPSS MANOVA through 
PRINT = ERROR(COR), appear in Table 7.17. (Diagonal elements are pooled standard devia- 
tions.) Correlations among ESTEEM, NEUROTIC, and CONTROL are in excess of .30 so stepdown 
analysis is appropriate. 

Even if stepdown analysis is the primary procedure, knowledge of univariate Fs is required to 
correctly interpret the pattern of stepdown Fs. And, although the statistical significance of these F 
values is misleading, investigators frequently are interested in the ANOVA that would have been pro- 

I 

duced if each DV had been investigated in isolation. These univariate analyses are produced auto- 
matically by SPSS MANOVA and shown in Table 7.18 for the three effects in turn: FEM by MASC, i 
MASC, and FEM. F values are substantiai for aii DVs except SEL2 for MASC and ESTEEM, ATT- 

i 
ROLE, and INTEXT for FEM. i 

Finally, Roy-Bargmann stepdown analysis, produced by PRINT=SIGNI F(STEPDOWN), 
allows a statistically pure look at the significance of DVs, in context, with Type I error rate controlled. 

TABLE 7.16 Data Set Output from NoncF3.sps for Effect Size (r2) with 95% Confidence Limits (lr2 
and ur 2) for Interaction, MASC, and FEM, Respectively 

i 

'-'For more complex des~gns. J bingle aourcr table contain~ng all effects call be obta~necl through PRINT=SIGNIF(BRIEF) 
but the table displays only Wilks' lambda. 



TABLE 7.17 Pooled PVithin-Cell Correlations among Six DV5 (Selected Output from SPSS 
MANOVA-See Table 7.15 for Sq ntax) 

WITHIN+RESIDUAL Correlations with Std. Devs. on Diagonal 

ESTEEM ATTROLE NEUROTIC INTEXT CONTROL SEL2 

ESTEEM 3.533 
ATTROLE -145  6.227 
NEUROTIC .358 . 051  4.965 
INTEXT -. 164 . 011  -. 009 3 .587  
CONTROL .348 -. 031  .387 -. 083 1 . 2 6 7  
SEL2 -.035 .016 -. 015 .055 - .084  25 .501  

TABLE 7.18 Univariate Analyses of Variance of Six DVs for Effects of (Top to Bottom) 
FEM by MASC Interaction, Masculinity, and Femininity (Selected Output from 
SPSS MANOVA--See Table 7.15 for Syntax) 
P 

I EFFECT. . FEM BY MASC (Cant . ) 
Univariate F-tests with (1 ,364 )  D. F. 

Variable Hypoth. SS Error SS Hypoth. MS Error MS F Sig. of F 

ESTEEM 17.48685 4544.44694 17.48685 12.48474 1 .40066  -237  
ATTROLE 36.79594 14115.1212 36.79594 38.77781 .94889 . 3 3 1  
NEUROTIC .20239 8973.67662 .20239 24.65296 .00821 .928 
INTEXT .02264 4684.17900 -02264 12.86862 ,00176 .967 
CONTROL .89539 584.14258 .89539 1.60479 .55795 .456 
SEL2 353.58143 236708.966 353.58143 650.29936 .54372 . 461  

nn nr FECT. . YASC (Cant . ) 
Univariate F-tests with ( 1 , 3 6 4 )  D. F. 

Variable Hypoth. SS Error SS Hypoth. MS Error MS F Sig. of F 

ESTEEM 979.60086 4544.44694 979.60086 12.48474 78.46383 . O O O  
A'TTROTjE 1426.756?5 14115.1212 1426.75675 38.77781 35 .79313 . O O O  
NmTROTIC 179.53396 8973.67662 179.53396 24.65296 7 .28245 .007 
INTEXT 327.40797 4684.17900 327.40797 12.86862 25 .44235 . O O O  
CONTROL 11.85923 584.14258 11 .85923 1 .60479 7 .38991  .007 
SEL2 1105.38196 236708.966 1105.38196 650.29936 1 .69980 . I 9 3  

EFFECT.. FEM (Cont.) 
Univariate F-tests with ( 1 , 3 6 4 )  D. F. 

Variable Hypoth. SS Error SS Hypoth. MS Error MS F Sig. of F 

ESTEEM 101.46536 4544.44694 101.46536 12.48474 8 .12715 -005  
ATTROLE 610.88860 14115.1212 610.88860 38.77781 15 .75356  . O O O  
NEUROTIC 44.05442 8973.67662 44.05442 24.65296 1 .78698  . I 8 2  
INTEXT 87.75996 4684.17900 87.75996 12.86862 6.81968 .009 
CONTROL 2.83106 584.14258 2.83106 1.60479 1 .76414  . I 8 5  
SEL2 9 .00691  236708.966 9 .00691 650.29936 .01385 .906  
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For this study. the following priority order of DVs 1s developed. fro111 most to least important: 
ESTEEM. ATTROLE, NEUROTIC, INTEXT, CONTROL. SEL2. Following the procedures for qtep- 
down analysis (Section 7.5.3.2), the highest-priority DV, ESTEEM. is tested in univariate ANOVA. 
The second-priority DV. ATTROLE, is assessed in ANCOVA with ESTEEM as the covariate. The 
third-priority DV, ,NEUROTIC, is tested with ESTEEM and ATTROLE as covariates, and so on, until 
all DVs are analyzed. Stepdown analyses for the interaction and both main effects are in Table 7.19. 

For purposes of journal reporting, critical information from Tables 7.18 and 7.19 is consolidated 
into a single table with both univariate and stepdown analyses, as shown in Table 7.20. The alpha level 
established for each.DV is reported along with the significance levels for stepdown E The final three 
columns show partial $ with 95% confidence limits for all stepdown effects, described later. 

For the main effect of FEM, ESTEEM and ATTROLE are significant. (INTEXT would be sig- 
nificant in ANOVA but its variance is already accounted for through overlap with ESTEEM, as noted 

TABLE 7.19 Stepdown'Analyses of Six Ordered DVs for (Top to Bottom) FEM 
by MASC Interaction, Masculinity, and Femininity (Selected Output from SPSS MANOVA- 

I 

see Table 7.16 for Syntax) 

RQY-Bargman Stepdown F-test 

Variable Hypoth. MS Error MS Stepdown F Hypoth. DF Error DF Sig. of F 

ESTEEM 17.48685 12 .48474 1.40066 1 3 64 .237 
ATTROLE 24.85653 38.06383 .65302 1 363 .420 
NEUROTIC 2.69735 21.61699 . I2478  1 3 62 .724 
INTEXT -26110 12.57182 .02077 1 361  .885  
CONTROL .41040 1 .28441  .31952 1 360 .572 
SEL2 297.09000 652.80588 .45510 1 359 .500 

Roy-Bargman Stepdown F-tests i 

Variabie Hypoth. MS Error MS Stepdown F Hypoth. DF Error DF Sig. of F 1 
I 

ESTEEM 979.60086 12 .48474 78.46383 1 3 64 . O O O  
ATTROLE 728.51682 38.06383 19.13935 1 363 . O O O  
NEUROTIC 4.14529 21.61699 . I9176  1 362 .662 
INTEXT 139.98354 12.57182 11.13471 1 361  . 001  I 

CONTROL .00082 1 .28441  .00064 1 360 -980  
SEL2 406.59619 652.80588 .62284 1 359 . 431  

Roy-Bargrnan Stepdown F-tests 

Variable Hypoth. MS Error MS Stepdown F Hypoth. DF Error DF Sig. of F 

ESTEEM 101.46536 12 .48474 8.12715 1 3 64 .005 
ATTROLE 728.76735 38.06383 19.14593 1 3 63 . O O O  
NEUROTIC 2.21946 21.61699 . I0267  1 362 .749 
INTEXT 47.98941 12 .57182 3.81722 1 361  .052 
CONTROL .05836 1 .28441  .04543 1 360 - 8 3 1  
SEL2 15.94930 652.80588 .02443 1 359 .876 
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TABLE 7.20 Tests of Femininity, &Iasculinity, and Their Interaction 

CL around 
Partial tl"er a 

Univariate Stepdown Partial 
IV DV F df F df a q2 Lower- Upper 

Femininity ESTEEM 
ATTROLE 
NEUROTIC 
INTEXT 
CONTROL 
SEL2 

Masculinity ESTEEM 
ATTROLE 
NEUROTIC 
INTEXT 
CONTROL 
SEL2 

Femininity by ESTEEM 
masculinity ATTROLE 
interaction NEUROTIC 

INTEXT 
CONTROL 
SEL2 

Yiignificance level cannot be evaluated but would reach p < .O I in univariate context. 
"-,-,1, 

in the pooled within-cell correlation matrix.) For the main effect of MASC, ESTEEM, ATTROLE, 
and INTEXT are significant. (NEUROTIC and CONTROL would be significant in ANOVA, but 
their variance is also already accounted for through overlap with ESTEEM, ATTROLE, and, in the 
case of CONTROL, NEUROTIC and INTEXT.) 

For the DVs significant in stepdown analysis, the relevant adjusted marginal means are needed 
for interpretation. Marginal means are needed for ESTEEM for FEM and for MASC adjusted for 
FEM. Also needed are marginal means for ATTROLE with ESTEEM as a covariate for both FEM, 
and MASC adjusted for FEM; lastly, marginal means are needed for INTEXT with ESTEEM, A m -  
ROLE, and NEUROTIC as covariates for MASC adjusted for FEM. Table 7.21 contains syntax and 
selected output for these marginal means as produced through SPSS MANOVA. In the table, level of 
effect is identified under PARAMETER and mean is under C o e f  f .  Thus, the mean for ESTEEM at 
level 1 of FEM is 16.57. Marginal means for effects with univariate, but not stepdown, differences 
are shown in Table 7.22 where means for NEUROTIC and CONTROL are found for the main effect 
of MASC adjusted for FEM. 

Effect size for each DV is evaluated as partial r12 (Equation 3.25,3.26,6.7,6.8, or 6.9). The infor- 
mation you need for calculation of $ i s  available in SPSS MANOVA ctepdown tables (see Table 7.19) 
but not in a convenient form; mean squares are given in the tables but you need sums of squares for cal- 
culation of r12. Smithson's (2003) program (NoncF3.sps) calculates confidence limits for effect sizes 
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T.4BLE 7.11 Adjusted Marginal Means for ESTEEM; ATTROLE with ESTEEM as a Covariate; and 
INTEXT with ESTEEM, ATTROLE, and NEUROTIC as Cobariates (Syntas and Selected Output 
from SPSS MANOV'4) 

MANOVA ESTEEM,ATTROLE,NElJROTIC,INTEXT,CONTROL,SEL2 BY FEM,MASC(1,2) 
/PRI NT=PARAMETERS(ESTIM) 

/ANALYSIS=ESTEEM /DESIGN=CONSPLUS FEM 
/DESIGN=FEM,CONSPLUS MASC 

/ANALYSIS=ATTROLE WlTH ESTEEM /DESIGN=CONSPLUS FEM 
/DESIGN=FEM, CONSPLUS MASC 

/ANALYSIS=INTEXT WlTH ESTEEM,ATTROLE,NEUROTIC 
/DESIGN=FEM. CONSPLUS MASC. 

Estimates for ESTEEM 
--- Individual univariate .9500 confidence intervals 

Parameter Coeff. Std. Err. t-Value Sig; t Lower -95% CL- Upper 

Estimates for ESTEEM 
--- Individual univariate .9500 confidence intervals . - 

CONSPLUS MASC 

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper 

Estimates for ATTROLE adjy_sted_ for 1 covariate 
--- Individual univariate .9500 confidence intervals 

CONSPLUS FEM 

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper 

Estimates for ATTROLE adjusted for 1 covariate 
--- Individual univariate .9500 confidence intervals 

CONSPLUS MASC 
CP 

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper 
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TARLE 7.21 Continued 

Estimates for INTEXT adjusted for 3 covariates 
- Individual univariate .9500 confidence intervals 

CONSPLUS MASC 

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper 

2 11.0013930 .25372 43.36122 . O O O O O  10.50245 11.50033 
3 12.4772029 .35546 35.10172 . O O O O O  11.77818 13.17623 

Note: Coeff. = adjusted marginal mean; first parameter = low, second parameter = high. 

TABLE 7.22 Unadjusted Marginal Means for Neurotic and Control (Syntax and Selected Output 
from SPSS MANOVA! 

MANOVA ESTEEM,ATTROLE,NEUROTIC,INTEXT,CONTROL,SEL2 BY FEM,MASC(1,2) 
/PRINT=PARAMETERS(ESTIM) 
/ANALYSIS=NEUROTIC /DESIGN=FEM, CONSPLUS MASC 
/ANALYSIS=CONTROL /DESIGN=FEM, CONSPLUS MASC. 

Estimates for NEUROTIC 
--- Individual univariate .9500 confidence intervals 

CONSPLUS MASC 

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper 
I 

Estimates for CONTROL 
--- Individual univariate .9500 confidence intervals 

CONSPLUS MASC 

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper 

2 6.89163310 .08665 79.53388 . O O O O O  6.72124 7.06203 
3 6.51258160 -11735 55.49504 .OOOOO 6.28181 6.74336 

Note: Coeft. = unadjusted marginal mean, first parameter = low, second parameter = high. 

and also calculates the effect size itself from F (stepdown or otherwise), df for effect (dfl) and error 
(df2). and the percentage associated with the desired confidence limits. These four values are entered 
into the data sheet (NoncEsav). The remaining columns of NoncEsav are filled in when NoncF3.sps 
is run. The relevant output columns are 1-2 (equivalent to partial r12 of Equation 6.9), 11-2 and ur2. the 
lower and upper confidence limits, respectively, for the effect size. Table 7.23 shows the inputfoutput 
data set for all of the stepdown effects following the order in Table 7.20, e.g., I = ESTEEM for FEM, 
2 = ATTROLE for FEM, 3 = NEUROTIC for FEM and so on. Values filled into the first three columns 
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are from Table 7.20. The value o f  99 or 999 filled in for the confidence limit5 retlects the c h o ~ e n  ( t  

level for each effect. 
A checklist for MANOVA appears in Table 7.24. An example of a Results section, In journal 

format, follows for the study just described. 

TABLE 7.23 Data Set Output for Stepdown Effects from NoncF3.sps for Effect Size (r2) with 95% 
Confidence Limits (lr2 and ur2) 

TABLE 7.24 Checklist for NIultivariate Analysis of Variance 
I 

1. Issues 
a. Unequal sample sizes and missing data ! 
b. Normality of sampling distributions 
c. Outliers 
d. Homogeneity of variance-covariance matrices 
e. Linearity 
f. In stepdown, when DVs act as covariates 

(1) Homogeneity of regression 
(2) Reliability of DVs 1 

g. Multicollinearity and singularity 
2. Major analyses: Planned comparisons or omnibus E when significant. Importance of DVs 

a. Within-cell correlations, stepdown E univariate F 
b. Effect sizes with confidence interval for significant stepdown F 
c. Means or adjusted marginal an!l/or cell means for significant F; with standard deviations, standard 

errors, or confidence intervals 
3. Multivariate effect size($) with confidence interval(s) for planned comparisons or omnibus F 
4. Additional analyses 

a. Post hoc comparisons 
b. Interpretation of IV-covariates interaction (if homogeneity of regression violated) 
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Results 

A 2 x 2 between-subjects multivariate analysis of variance was 

performed on six dependent variables: Self-esteem, attitude toward 

the role of woma, neuroticism, introversion-extraversion, locus of 

control, and socioeconomic level. Independent variables were mas- 

culinity (low and high) and femininity (low and high). 

SPSS MANOVA was used for the analyses with the sequential adjust- 

mat for nonorthogonality. Order of entry of IVs was femininity, then 

masculinity. Total N of 369 was reduced to 368 with the deletion of a 

case missing a score on locus of control. There were no univariate or 

multivariate within-cell outliers at p < .001. Results of evaiuation 

of assumptions of normality, hamogeneity of variance-covariance 

mtrices, linearity, and multicollinearity were satisfactory. 

With the use of Wilks' criterion, the combined DVs were 

significantly affected by both masculinity, F(6, 359) = 19.27, 

p <  .001, and femininity, F ( 6 ,  359) = 5.27, p < .001, but not by 

their interaction, F ( 6 ,  359) = 0.49, p > -05. The results reflected a 

nodest association between masculinity scores (IOW vs. kii~;h) =d the 

combined Ws, partial q2 = .24 with 95% confidence iimits from .16 to 

-30. The association was even less substantial between femininity 

and the Ws, partial q2 = .08 with 95% confidence limits from .02 to 

.13. For the nonsignificant interaction, q2 = -01 with 95% confidence 

limits from .OO to .02. [F and P i l l a i f s  value (partial q2) are frm 

Table 7.15; confidence limits for q2 are found through NoncF3. sps. I 

To investigate the impact of each main effect on the individual 

Ws, a Roy-Bar- stepdown analysis was performed on the priori- 

tized Ws. All W s  were judged to be sufficiently reliable to warrant 

stepdown analysis. In stepdown analysis each W was analyzed, in 

turn, with higher-priority W s  treated as covariates and with the 

highest-priority W tested in a univariate ANOVA. Homogeneity of 

regression was achieved for all conponents of the stepdown analysis. 



Results of this analysis are summarized in Table 7.20. An 

experimentwise error rate of 5% was achieved by the apportionment of 

alpha as shown in the last coiumn of Table 7.20 for each of the Ws. 

A unique contribution to predicting differences between those low 

and high on femininity was made by self-esteem, stepdown 

F(1, 364) = 8.13, p < .01, q2 = .02 with 99% confidence limits from 

.OO to .07. Self-esteem was scored inversely, so women with higher 

femininity scores showed greater self-esteem (mean self-esteem = 

15.41, SE = 0.24) than those with lower femininity (mean self -esteem 

= 16.57, SE = 0.38). After the pattern of differences measured by 

seif-esteem was entered, a difference was also found on attitude 

toward the role of women, stepdown F(1, 363) = 19.15, p < .Oil q2 = 

.05 with confidence limits from .O1 to .12. W- with higher femi- 

ninity scores had more consenrative attitudes toward women's role 

(adjusted mean attitude = 35.90, SE = 0.35) than those lower in femi- 

ninity (adjusted mean attitude = 32.57, SE = 0.61) . Although a uni- 
variate comparison revealed that those higher in femininity also were 

more extroverted, univariate F(1, 364) = 6.82, this difference was 

already represented. in the stepdown analysis by higher-priority Ws. 

Three ISVs-self-esteem, attitude toward role of women, and 

introvert-extrovert-made unique contributions to the composite DV 

that best distinguished between those high and low in masculinity. 

The greatest contribution was made by self-esteem, the highest- 

priority W ,  stepdown F(1, 364) = 78.46, p < .01, q2 = 18 with confi- 

dence limits from .09 to .27. Women scoring high in masculinity had 

higher self-esteem (mean self-esteem = 13.71, SE = 0.33) than those 

scoring low (mean self-esteem = 17.16, SE = 0.24). With differences 

due to self-esteem already entered, attitudes toward the role of 

women made a unique contribution, stepdovm F(1, 363) = 19.14, p < 

.01, q2 = .05 with confidence limits from .O1 to .12. Women scoring 

lower in masculinity had more conservative attitudes toward the 



proper role of women (adjusted mean attitude = 35.39, SE = 0.44) than 

those scoring higher (adjusted mean attitude = 32.13, SE = 0.60). 

Introversion-extraversion, adjusted by self-esteem, attitudes taward 

warnen's role, and neuroticisn also made a unique contribution to the 

composite W ,  stepdown F(1, 361) = 11.13, p c .01, q2 = .03 with con- 

fidence limits from .OO to .09. Women with higher masculinity were 

more extroverted (mean adjusted introversion-extraversion score = 

12.48) than lower masculinity women (mean adjusted introversion- 

extraversion score = 11.00). Univariate analyses revealed that women 

with higher masculinity scores were also less neurotic, univariate 

F(1, 364) = 7.28, and had a more internal locus of control, univari- 

ate F(1, 364) 7.39, differences that were already accounted for in 

the composite Dv by higher-priority Ws. [Means adjusted for main 

e f f ec t s  and for other W s  for stepdom i n t q r e t a t i o n  are from Table 

7.21, partial q2 values and confidence limits are from Table 7.23. 

Means adjusted for main e f f ec t s  but not other W s  for univariate 

interpretation are i n  Table 7-22 . ]  

High-masculinity women, then, have greater self-esteem, less 

conservative attitudes toward the role of women, and more extraver- 

sion than women scoring low on masculinity. High femininity is asso- 

ciated with greater self-esteem and more conservative attitudes 

toward women's role than low femininity. Of the five effects, how- 

ever, only the association between masculinity and self-esteem shows 

even a moderate proportion of shared variance. 

Pooled within-cell correlations among W s  are shown in Table 7.17. 

The only relationships accounting for mre than 10% of variance 

are between self-esteem and neuroticisn (r = .36), locus of control 

and self-esteem (r = .35), and between neuroticism locus of con- 

trol (r = -39). Women who are high in neuroticism tend to have lower 

self-esteem and more external locus of control. 



7.6.3 Multivariate Analysis of Covariance 

For MANCOVA the same six variables are used as for MANOVA but ESTEEM, INTEXT, and NEU- 
ROTIC are used as DVs and CONTROL, ATTROLE, and SEL2 are used as covariates. The research 
question is whether there are personality differences associated with femininity, masculinity, and 
their interaction after adjustment for differences in attitudes and socioeconomic status. 

Syntax and partial output of omnibus MANCOVA as produced by SPSS MANOVA appear in 
Table 7.25. As in MANOVA, Method 3 adjustment for unequal n is used with MASC adjusted for 
FEM and the interaction is adjusted for FEM and MASC. And, as in MANOVA, both main effects 
are highly significant but there is no interaction. Effect sizes for the three effects are Pillai's values. 
Entering Approx . F and appropriate df and percentage values into the NoncF.sav program and run- 
ning NoncF3.sps, 95% confidence limits for these effect sizes are .OO to 08 for FEM, .08 to .21 for 
MASC, and .OO to .O1 for the interaction. 

7.6.3.1 Assessing Covariates 

Under EFFECT. . WITHIN+RESIDUAL Regression is the multivariate significance test for the 
rdadoiiship betiieeii the set of D'v's (ESTEEM, INTEXT, ar~d NETu'ROTiCj and the set of covariates 
(CONTROL, ATTROLE, and SEL2) after adjustment for IVs. Partial 112 is calculated through the 
NoncF3.sps algorithm (Pillai's criterion is inappropriate unless s = 1 )  using Approx . F and appro- 
priate df and is found to be .10 with 95% confidence limits from .06 to .13. 

Because there is multivariate significance, it is useful to look at the three multiple regression 
analyses of each DV in turn, with covariates acting as IVs (see Chapter 5). The syntax of Table 7.25 
automatically produces these regressions. They are done on the pooled within-cell correlation 
matrix, so that effects of the IVs are eliminated. 

The results of the DV-covariate multiple regressions are shown in Table 7.26. At the top of 
Table 7.26 are the results of the univariate and stepdown analysis, summarizing the results of multi- 
ple regressions for the three DVs independently and then in prionty order (see Section 7.6.3.2). At 
the bottom of Table 7.26 under Regression analysis for WITHIN+RESIDUAL error 
term are the separate regressions for each DV with covariates as IVs. For ESTEEM, two covariates, 
CONTROL and ATTROLE, are significantly related but SEL2 is not. None of the three covariates is 
related to INTEXT. Finally, for NEUROTIC, only CONTROL is significantly related. Because 
SEL2 provides no adjustment to any of the DVs, it could be omitted from future analyses. 

7.6.3.2 Assessing DVs 

Procedures for evaluating DVs, now adjusted for covariates, follow those specified in Section 7.6.2 
for MANOVA. Correlations among all DVs, among covariates, and between DVs and covariates are 
informative so all the correlations in Table 7.17 are still relevant.15 

Univariate Fs are now adjusted for covariates. The univariate ANCOVAs produced by the 
SPSS MANOVA run specified in Table 7.25 are shown in Table 7.27. Although significance levels 
are misleading, there are substantial F values for ESTEEM and INTEXT for MASC (adjusted for 
FEM) and for FEM. 

For interpretation of effects of IVs on DVs adjusted for covariates, comparison of stepdown Fs 
with univariate Fs again provides the best information. The priority order of DVs for this analysis is 

' j ~ o r  MANCOVA. SPSS MANOVA prints pooled within-cell correlations among DVs (called criteria) adjusted for covari- 
ates. To get a pooled within-cell correlation matrix for covariates as well as DVs, you need a run in which covariates are 
included in the set of DVs. 
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T.\BLE 7.25 klriltivariate .4naljsis of Covariance of Composite of DVs (ESTEEM, INTEXT, and 
NEUROTIC) as a Function of (Top to Bottom) FEM by SIASC Interaction, ;Llasculinity. and 
Femininity; Covariates are ATTROLE, CONTROL, and SEL2 (Syntax and Selected Output from 
SPSS MANOVA) 

MANOVA ESTEEM,ATTROLE,NEUROTIC,INTEXT,CONTROL,SEL2 BY FEM,MASC(I ,2) 
/ANALYSIS=ESTEEM,INTEXT,NEUROTIC WITH CONTROL,ATTROLE,SEL2 
/PRINT=SIGNIF(STEPDOWN), ERROR(COR), 

HOMOGENEITY(BARTLETT,COCHRAN,BOXM) 
/METH'OD=SEQUENTI AL 
/DESIGN FEM MASC FEM BY MASC. 

EFFECT .. WITHIN+RESIDUAL Regression 
Multivariate Tests of Significance (S = 3 ,  M = - 1 / 2 ,  N = 1 7 8  1 / 2 )  

Test Name ' Value Approx. F Hypoth. DF Error DF Sig. of F 

Pillais .23026 10 .00372 9 . 0 0  1083 .00  . O O O  
Hoteliings .29094 11 .56236 9 .00  1073,OO . O O O  
Wilks .77250 10 .86414  9 . 0 0  873 .86  . O O O  
Roys .21770 

EFFECT.. FEM BY MASC 
Multivariate Tests of Significance (S = 1 ,  M = 1 / 2 ,  N = 1 7 8  1 / 2 1  

Test Name Value Approx. F Hypoth. DF Error DF Sig. of F 

Pillais .00263 .31551 3 .00  359 .00  .814  
Hotellings .00264 .31551 3 .00  359 .00  .814  
Wilks .99737 . 31551  3 . 0 0  359 .00  . 814  
Roys .OD263 
Note.. F statistics are exact. 

EFFECT.. MASC 
Multivariate Tests of Significance ( S  = 1 ,  M = 1/2, N = 1 7 8  1/2) 

Test Name Value Approx. F Hypoth. DF Error DF Sig. of F 

Pillais . I 4 6 8 3  20.59478 3 .00  359 .00  . O O O  
Hotellings . I 7210  20 .59478 3 .00  359 .00  . O O O  
Wilks .85317 20 .59478 3 . 0 0  359 .00  . O O O  
Roys . I 4 6 8 3  
Note.. F statistics are exact. 

EFFECT.. FEM 
Multivariate Tests of Significance (S = 1 ,  M = 1 / 2 ,  N = 1 7 8  1 / 2 )  

Test Name Value Approx. F Hypoth. DF Error DF Sig. of F 

Pillais .03755 4 .66837  3 . 0 0  359 .00  . 003  
Hotellings .03901 4 .66837 3 .00  3  59 .00  .003  
Wilks .96245 4 .66837 3 .00  359 .00  . 003  
Roys .03755 
Note.. F statistics are exact. 
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TABLE 7.26 Assessment of Covariates: Univariate, Stepdown, and hlultiple Regression Analyses 
for Three DVs with Three Covariates (Selected Output from SPSS hlANOVA-see Table 7.25 for 
Syntax) 

EFFECT.. WITHIN+RESIDUAL Regression (Cont.) 
Univariate F-tests with ( 3 , 3 6 1 )  D. F. 

Variable Hypoth. SS Error SS Hypoth. MS Error MS F 

ESTEEM 6 6 0 . 8 4 2 0 4  3883 .60490  220 .28068  1 0 . 7 5 7 9 1  2 0 . 4 7 6 1 6  
INTEXT 4 3 . 6 6 6 0 5  4640 .51295  1 4 . 5 5 5 3 5  1 2 . 8 5 4 6 1  1 . 1 3 2 3 1  
NEUROTIC 1 3 8 4 . 1 6 0 5 9  7 5 8 9 . 5 1 6 0 4  4 6 1 . 3 8 6 8 6  2 1 . 0 2 3 5 9  2 1 . 9 4 6 1 5  

Variable Sig. of F 

ESTEEM . O O O  
INTEXT . 3 3 6  
NEUROTIC . O O O  

....................................................................... 
Roy-Bargman Stepdown F-tests 

Variable Hypoth. MS Error MS Stepdown F Hypoth. DF Error DF Sig. of F 

ESTEEM 220.28068 10 .75791  20.47616 3  3 6 1  . O O O  
INTEXT 6.35936 12 .60679  .50444 3  360 .679  
NEUROTIC 239.94209 19.72942 12.16164 3  359 .000  

Regression analysis for WITHIN+RESIDUAL error term 
--- Individual Univariate . 9500  confidence intervals 

Dependent variable . .  ESTEEM Self-esteem 

CO'VARIRTE B Beta Std. Err. t-Value Sig. of t 

CONTROL . 9 8 1 7 3  . 3 2 0 0 5  . I 3 6  7 . 2 0 5  . O O O  
ATTROLE . 0 8 8 6 1  . I 5 0 0 8  . 0 2 8  3 . 2 0 8  . O O i  
SEL2 - .  0 0 1 1 1  -. 00723 . 0 0 7  - .  1 6 4  . 8 6 9  

Regression analysis for WITHIN+RESIDUAL error term 
Dependent variable .. ESTEEM Self-esteem 

COVARIATE Lower -95% CL- Upper 

CONTROL . 7 1 4  1 . 2 5 0  
ATTROLE . 0 3 4  . I 4 3  
SEL2 -. 0 1 4  . 0 1 2  

Dependent variable . .  INTEXT Introversion-extroversion 

COVARIATE B Beta Std. Err. t-Value Sig. of t 

CONTROL - . 2 2 3 2 2  - .  07655  . I 4 9  - 1 . 4 9 9  . I 3 5  
ATTROLE - 0 0 4 5 6  .00812  . 0 3 0  . I 5 1  . 8 8 0  
SEL2 . 00682  .04662  . 0 0 7  .922  . 3  57  
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'T.ARLE 7.26 Continued 

COVARIATE Lower -95% CL- Upper 

CONTROL -. 516  . 0 7 0  
ATTROLE -. 0 5 5  . 0 6 4  
SEL2 -. 0 0 8  . 0 2 1  

Dependent variable .. NEUROTIC Neuroticism 

COVARIATE . B Beta Std. Err. t-Value Sig. of t 

CONTROL 1 . 5 3 1 2 8  .39102  . I 9 0  8 . 0 4 0  . O O O  
ATTROLE . 0 4 9 7 1  . 0 6 5 9 5  - 0 3 9  1 . 2 8 7  . I 9 9  
SEL2 . 0 0 3 2 8  .01670  . 0 0 9  . 3 4 7  . 7 2 9  

COVARIATE Lower -95% CL- Upper 

CONTROL 1 . 1 5 7  1 . 9 0 6  
ATTROLE -. 0 2 6  . 1 2  6 
SEL2 -. 0 1 5  . 0 2 2  

TABLE 7.27 Univariate Analyses of Covariance of Three DVs Adjusted for Three Covariates 
for (Top to Bottom) FEM by MASC Interaction, Masculinity, and Femininity 
(Selected Output from SPSS MANOVA-see Table 7.25 for Syntax) 

EFFECT. . FEM BY MASC (Cant. ) 
Univariate F-tests with ( 1 , 3 6 1 )  D. F. 

Variable Hypoth. SS Error SS Hypoth. MS Error MS 

ESTEEM 7 .21931  3883.60490 7 .21931  10 .75791  
I N T m  2.59032 464051.295 2.59032 1285.46065 
Imtl'ROTIC 1 .52636  7589.51604 1.52636 21.02359 

EFFECT. . MASC (Cant . ) 
Univariate F-tests with ( 1 , 3 6 1 )  D. F. 

Variable Hypoth. SS Error SS Hypoth. MS Error M S  

ESTEEM 533.61774 3883.60490 533.61774 10.75791 
LNTEXT 26444.5451 464051.295 26444.5451 1285.46065 
NEUROTIC 35.82929 7589.51604 35.82929 21.02359 

EFFECT. . FEM (Cont . ) 
Univariate F-tests with ( 1 , 3 6 1 )  D. F. 

Variable Hypoth. SS Error SS Hypoth. MS Error MS 

ESTEEM 107.44454 3883.60490 107.44454 10 .75791  
INTEXT 7494.31182 464051.295 7494.31182 1285.46065 
NEUROTIC 26 .81431  7589.51604 26.81431 21.02359 

F Sig. of F 

F Sig. of F 

F Sig. of F 
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ESTEEM. IhTEXT. and NELIROTIC. ESTEEM is e\sal~~ated after aajust~netit only for the three 
covariateq. INTEXT ii; adjusted for effects of ESTEEM and the three co~ariates; NEUROTIC i.4 

adjusted for ESTEEM and INTEXT and the three covariates. In effect, then, INTEXT is adjusted for 
four covariates and NEUROTIC is adjusted for five. 

Stepdown analysis for the interaction and two main effects is in Table 7.28. The results are the 
sarne as those in MANOVA except that there is no longer a main effect of FEM on INTEXT after adjust- 
ment for four covariates. The relationship between FEM and INTEXT is already represented by the 
relationship between FEM and ESTEEM. Consolidation of information from Tables 7.27 and 7.28, as 
well as some information from Table 7.26, appears in Table 7.29, along with apportionment of the .05 
alpha error to the various tests and effect sizes with their confidence limits based on the a error chosen. 

For the DVs associated with significant main effects, interpretation requires associated mar- 
ginal means. Table 7.30 contains syntax and adjusted marginal means for ESTEEM and for INTEXT 
(which is adjusted for ESTEEM as well as covariates) for FEM and for MASC adjusted for FEM. 
Syntax and marginal means for the main effect of FEM on INTEXT (univariate but not stepdown 
effect) appear in Table 7.3 1. 

Effect sizes and their confidence limits for stepdown effects are found through Smithson's 
(2003) program as for MANOVA. Table 7.32 shows the inputloutput for that analysis using values 
from Table 7.28. Values chosen for confidence limits reflect apportionment of a. A checklist for 
MANCOVA appears in Table 7.33. An example of a Results section, as might be appropriate for 
journal presentation, follows. 

TABLE 7.28 Stepdown Analyses of Three Ordered DVs Adjusted for Three Covariates for 
(Top to Bottom) FEM by MASC Interaction, Masculinity, and Femininity (Selected Output 
from SPSS MANOVA-see Table 7.25 for Syntax) 

Roy-Bargman Stepdown F-tests 

Variable Hypoth. MS Error MS StepDown F Hypoth. DF Error DF Sig. of F 

ESTEEM 7.21931 10.75791 .67107 1 3 6 1  -413  
INTEXT .35520 12.60679 .02817 1 360 .867 
NEUROTIC 4.94321 19.72942 .25055 1 359 .617 

Roy-Bargman Stepdown F-tests 

Variable Hypoth. MS Error MS StepDown F Hypoth. DF Error DF Sig. of F 

ESTEEM 533.61774 10 .75791 49.60237 1 3 6 1  .OOO 
INTEXT 137.74436 12.60679 10.92621 1 360 . 001  
NEUROTIC 1.07421 19.72942 .05445 1 359 .816 

Roy-Bargman Stepdown F-tests 

Variable Hypoth. MS Error MS StepDown F Hypoth. DF Error DF Sig. of F 

ESTEEM 107.44454 10 .75791 9.98749 1 3 6 1  .002 
INTEXT 47.36159 12.60679 3.75683 1 360 .053 
NEUROTIC 4.23502 19.72942 .21466 1 3 59 .643 
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TABLE 7.29 Tests of Covariates, Femininity, %Iasculinity (Adjusted for Femininity), and Interaction 

CL around 
Partial tlz per a 

Univariate Stepdown Partial 
IV DV F df F df a t12 Lov~ler- Upper 

Covariates ESTEEM 
INTEXT 
'NEUROTIC 

Femininity ESTEEM 
INTEXT 
NEUROTIC 

Masculinity ESTEEM 
INTEXT 
NEUROTIC 

Femininity by ESTEEM 
masciiiinity !NTEXT 
interaction NEUROTIC 

"Significance level cannot be evaluated but would reach p< .02 in univariate context. 

TABLE 7.30 Adjusted Marginal Means for Esteem Adjusted for Three Covariates and INTEXT 
Adjusted for ESTEEM Plus Three Covariates (Syntax and Selected Output from SPSS MANOVA) 
- - -  

MANOVA ESTEEM,ATTROLE,NEUROTIC,INTEXT,CONTROL,SEL2 BY FEM,MASC(1,2) 
/PRINT=PARAMETERS(ESTIM) 
/ARAL'r'SIS=ESTEEM LAJITH CONTROL,ATTROLE,SEL2 
/DESIGN=CONSPLUS FEM /DESIGN=FEM,CONSPLUS MASC 
/ANALYSIS=INTEXT WITH CONTROL,ATTROLE,SEL2,ESTEEM 
/DESIGN=FEM, CONSPLuS,ivlASC. 

Estirrates for ESTEEM adjusted for 3 covariates 
--- Individual univariate .9500 confidence intervals 

CONSPLUS FEM 

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper 

Estimates for ESTEEM adjusted for 3 covariates 
--- Individual univariate .9500 confidence Intervals 

CONSPLUS MASC 

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper 
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TABLE 7.30 Continued 

Estimates for INTEXT adjusted for 4 covariates 
- - - Individual univariate .9500 confidence intervals 

CONSPLUS MASC . 

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper 

Note: Coeff. = adjusted margtnal mean; first parameter = low, second parameter = high. 

TABLE 7.31 Marginal Means for INTEXT Adjusted for Three Covariates Only (Syntax and 
Selected Output from SPSS MANOVA) 

MANOVA ESTEEM,ATTROLE,NEUROTIC,INTEXT,CONTROL,SEL2 BY FEM,MASC(1,2) 
/PRINT=PARAMETERS(ESTIM) 
/ANALYSIS=INTEXT WITH CONTROL,ATTROLE,SEL2, ESTEEM 
/DESIGN=CONSPLUS FEM. 

Estimates for INTEXT adjusted for 4 covariates 
- - - Individual univariate .9500 confidence intervals 

CONSPLUS FEM 

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper 

1 11.1014711 .35676 31.11753 . O O O O O  10.39989 11 .80305  
2 11.9085923 .22495 52.93984 . O O O O O  11.46623 12 .35096  

Note: Coeff. = adjusted marginal mean; first parameter = low, second parameter = high. 

TABLE 7.32 Data Set Output from NoncF3.sps for Effect Size (r2) with 95% Confidence Limits. 



Xlultiv~iriate 4i1:11y\i\ of V;~l.i;ince and Cov~iriance 303 

TABLE 7.33 Checklist for Xlult i~ariate ,Analysis of Covariance 

I .  Issues 

a. Unequal sample sizes and missing data 

b. Normality of sampling distributions 

c. Outliers 

d. Homogeneity of variance-covariance matrices 

e. Linearity . 
f. Homogeneity of regression 

(1) Covariates 

(2) DVs for stepdown analysis 

g. Reliability of covariates (and DVs for stepdown) 

h. Multicollinearity and singularity 

2. Major analyses: Planned comparisons or omnibus F; when significant: 
Importance of DVs 

a. Within-cell correlations, stepdown F: univariate F 

b. Effect size with its confidence interval for significant stepdown F 

c. Adjusted marginal and/or cell means for significant F: and standard 
deviations or standard errors or  confidence intervals 

3. Multivariate effect size(s) with contidence interval(s) for planned 
comparisons or omnibus E: 

4. Additional analyses 

a. Assessment of covariates 

h Intrrpreta~iun of IV-covariates interaction (if homogeneity of 
regression violated for stepdown analysis) 

c. Post hoc comparisons 

Results 

SPSS MANOVA was used for the analyses with the sequential adjust- 

ment for nonorthogonality. Order of entry of IVs was femininity, then 

masculinity. Total N =  369 was reduced to 368 with the deletion of a 

case missing a score on locus of control. There were no univariate or 

multivariate within-cell outliers at a = .001. Results of evaluation 

of assumptions of normality, ham~geneity of variance-covariance 

matrices, linearity, and multicollinearity were satisfactory. Covari- 

ates were judged to be adequately reliable for covariance analysis. 



A 2 x 2 between-subjects multivariate analysis of covariance was 

performed on three dependent variables associated with personality of 

respondents: self-esteem, introversion-extraversion, and neuroticism. 

Adjustment was made for three covariates: attitude toward role of 

women, locus of control, and socioeconomic status. Independent vari- 

ables were masculinity (high and low) and femininity (high and low). 

With the use of Wilks' criterion, the cambined W s  were 

significantly related to the combined covariates, approximate 

F(9, 873) = 10;86, p < .01, to femininity, F(3, 359) = 4.67, p < .01, 

and to masculinity, F(3, 359) = 20.59, p e  -001but not to the inter- 

action, F(3, 359) = 0.31, p > .05. There was a modest association 

between W s  and covariates, partial q2 = .10 with confidence limits 

from .06 to .29. A somwhat larger association was found between can- 

bined DVs and the main effect of masculinity, q2 = .15 with confidence 

limits from .08 to .21, but the association between the main effect 

of femininity and the ccanbined W s  was smaller, q2 = .04 with confi- 

dence limits £ran .OO to .08. Effect size for the nonsignificant 

interaction was -00 with confidence limits from .OO to .01. [F is 

frm Table 7.25; part ial  $ and their confidence limits are found 

through S n i  thson 's NoncF3. sps for main effects, interaction, and 

covariates. I 

To investigate more specifically the power of the covariates to 

adjust dependent variables, multiple regressions were run for each W 

in turn, with covariates acting as multiple predictors. of the 

three covariates, locus of control and attitudes toward warnen's role, 

provided significant adjustment to self-esteem. The B value of .98 

(confidence interval from .71 to 1.25) for locus of control was 

significantly different from zero, t(361) = 7.21, p < .001, as was the 

B value of .09 (con£ idence interval from .03 to .14) for attitudes 
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towar6 women's role, t (361) = 3.21, p < .01. None of the covariates 

provided adjustment to the introversion-extraversion scale. For neu- 

roticisn, only locus of control reached statistical significance, 

with B = 1.53 (confidence interval from 1.16 to 1.91), t(361) = 8.04, 

p < .001. For none of the W s  did socioecondc status provide sig- 

nificant adjustment. [Information about relationships for  individual 

W s  and CVs is f ram Table 7.26.1 

Effects of masculinity and femininity on the W s  after adjustment 

for covariates were investigated in univariate and Roy-Bar- step- 

down analysis, in which self-esteem was given the highest priority, 

introversion-extraversion second priority (so that adjustment -was 

made for self-esteem as well as for the three covariates), and neu- 

roticisn third priority (so that adjustment was made for self -esteem 

and introversion-extraversion as well as for the three covariates). 

Homgeneity of regression was satisfactory for this analysis, and W s  

were judged to be sufficiently reliable to act as covariates. Results 

of this analysis are surranarized in Table 7.29. An exgErimentwise 

error rate of 5% for each effect was acrIlievec3 by apprtio~ing alpha 

according to the values shown in the last column of the table. 

After adjusting for differences on the covariates, self-esteem 

made a significant contribution to the ccanposite of the DVs that best 

distinguishes between wmnen who were high or low in femininity, step- 
# 

down F(1, 361) = 9.99, p < .01, q2 = -03 with confidence limits from 

.OO to .08. With self -esteem scored inversely, women with higher fem- 

ininity scores showed greater self-esteem after adjustment for 

covariates (adjusted mean self-esteem = 15.35, SE = 0.22) than those 

scoring lower on femininity (adjusted mean self -esteem = 16.72, SE = 

0.34) . hvariate analysis revealed that a statistically signif izant 
difference was also present on the introversion-extraversion measure, 
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with higher-femininity women more extraverted, univariate F(1, 361) = 

5.83, a difference already accounted for by covariates and the 

higher-priority W .  [Adjusted means are from Tables 7.30 and 7.31; 

partial q2 and confidence limits are from Table 7.32. I 

Lower- versus higher-masculinity wcmm differed in self-esteem, 

the highest-priority W ,  after adjustment for covariates, stepdm 

F(1, 361) = 49.60, p < .01, q2 = .12 with confidence limits from -06 

to -20. Greater self-esteem was found among higher-masculinity women 

(aPjusted mean = 14.22, SE = 0.32) than m n g  lower-masculinity women 

(adjusted mean = 16.92, SE = 0.23) . The measure of introversion and 
extraversion, adjusted for covariates and self-esteem, was also 

related to differences in masculinity, stepdown F(1, 360) = 10.93, p 

< .01, q2 = .03 w i t h  confidence limits from .OO to .08. Wcanen scoring 

higher on the masculinity scale were more extraverted (adjusted mean 

extraversion 12.47, SE = 0.36) than those showing lower masculinity 

(adjusted mean extraversion = 11.01, SE = 0.25). 

High-masculinity women, then, are characterized by greater self- 

esteem and extraversion than low-masculinity women when adjustments 

are made for differences in socioeconcanic status, attitudes toward 

women's role, and locus of control. High-femininity wcanen show 

greater self-esteem than low-femininity women with adjustment for 

those covariates. 

Pooled within-cell correlations among dependent variables and 

covariates are shown in Table 7.19. The only relationships account- 

ing for more than 10% of variance are between self-esteem and neu- 

roticism (r = -36) , locus of control and self -esteem (r = .35) , and 

between neuroticism and locus of control (r = .39). Women who are 

high in neuroticism tend to have lower self-esteem and are more 

likely to attribute reinforcements to external sources. 



7.7 Comparison of Programs 

SPSS, SAS, and SYSTAT all have highly flexible and full-featured MANOVA programs, as seen i n  
Table 7.34. One-way between-subjects MANOVA is also available through discriminant function 
programs, as discussed in Chapter 9. 

SPSS has two programs, MANOVA (available only through syntax) and GLM. Features of the two 
programs are quite different, so that you may want to use both programs for an analysis. 

Both programs offer several methods of adjustment for unequal n and several statistical crite- 
ria for multivariate effects. In repeated-measures designs, the sphericity test offered by both pro- 
grams evaluates the sphericity assumption; if the assumption is rejected (that is, if the test is 
significant), one of the alternatives to repeated-measures ANOVA-MANOVA, for instance-is 
appropriate. There are also the Greenhouse-Geisser, Huynh-Feldt and lower-bound epsilons for 
adjustment of df for sphericity. SPSS MANOVA and GLM do the adjustment and provide signifi- 
cance levels for the effects with adjusted df. 

SPSS MANOVA has several features that make it superior to any of the other programs 
reviewed here. It is the only program that performs Roy-Bargmann stepdown analysis as an option 
(Section 7.5.3.2). Use of other programs requires a separate ANCOVA n1n for each DV after the one 
of highest priority. SPSS MANOVA also is the only program that has special syntax for pooling 
covariates to test homogeneity of regression for MANCOVA and stepdown analysis (Section 
7.6.1.6). If the assumption is violated, the manuals describe procedures for ANCOVA with separate 
regression estimates, if that is your choice. Full simple effects analyses are easily specified using the 
MWlTHlN instruction (Section 8.5.2). SPSS MANOVA also is easier to use for user-specified com- 
parisons. Bivariate coiliiiearitji and hom~geneity of variance-covariance matrices are readily tested 
ir. SPSS MANOVA through within-cell correlations and homogeneity of dispersion matrices, 
respectively. Multicollinearity is assessed through the determinant of the within-celis correiation 
matrix (cf. Section 4.1.7). 

Both programs provide complete descriptive statistics for unad.justed means and standard devi- 
ations, however, adjusted means for marginal and cell effects are more easily specified in SPSS GLM 
through the EMMEANS instruction. SPSS MANOVA provides adjusted cell means easily, but mar- 
ginal means require rather convoluted CONSPLUS instructions, as seen in Section 7.6. SPSS GLM 
provides leverage values (that are easily converted to Mahalanobis distance) to assess multivariate 
outliers. 

For between-subjects designs, both programs offer Bartlett's test of sphericity, which tests the 
null hypothesis that correlations among DVs are zero; if they are, univariate F (with Bonferroni 
adjustment) is used instead of stepdown F to test the importance of DVs (Section 7.5.3.1). 

A principai components analysis can be performed on the D V  through SPSS MANOVA, as 
described in the manuals. In the case of multicollinearity or singularity among DVs (see Chapter 4), 
principal components analysis can be used to produce composite variables that are orthogonal to one 
another. However. the prvgram still performs MANOVA on the raw DV scores, not the component 
scores. If MANOVA for component scoreb is desired, use the results of PCA and the COMPUTE 
facility to generate component scores for use as DVs. 



TABLE 7.34 Comparison of Programs for kfultivariate Analysis of Variance and Covariance" 

S Y STAT 
ANOVA, 

SPSS SPSS S AS GLkI,  and 
G L M  rvIANOVA GLM MANOVAg Feature 

Input 

Variety of strategies for unequal n 

Specify tolerance 

Specify exact tests for multivariate effects 

Yes 

EPS 

No 

Yes 

No 

No 

Yes 

SINGULAR 

MSTAT= 
EXACT 

Yes 

Yes 

No 

Output 

Standard source table for Wilks' lambda PRINT = 
SIGNIF 
(BRIEF) 

Cell covariance matrices Yes 

Cell covariance matrix determinants 

Cell correlation matrices 

Cell SSCP matrices 

Cell SSCP determinants 

Unadjusted marginal means for factorial 
design 

Unadjusted cell means 

Unadjusted cell standard deviations 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Confidence interval around unadjusted cell 
means 

Adjusted cell means 

No 

EMMEANS 

Yes 

PMEANS 

No 

LSMEANS 

No 

PRINT 
MEDIUM 

PRINT 
MEDIUM 

No 

No 

Yes 

Yes 

Standard errors for adjusted cell means EMMEANS LSMEANS 

Adjusted marginal means 

Standard errors for adjusted marginal means 

Wilks' lambda with approximate F statistic 

Criteria other than Wilks' 

Multivariate influencelleverage statistics by 
cell 

EMMEANS 

EMMEANS 

Yes 

Yes 

yesb 

No 

Yes 

Yes 

LSMEANS 

LSMEANS 

Yes 

Yes 

No 

No 

Yes 

No 

No 

Yes 

Yes 

Yes 

Box's M 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Box's M 

No 

Yes 

Yes 

No 

No 

No 

Yes 

Yesc 

No 

Data file 

Yes 

Yes 

No 

No 

Yesh 

No 

No 

No 

Canonical (discriminant function) statisticsC 

Univariate F tests 

Averaged univariate F tests 

Stepdown F tests (DVs) 

Sphericity test 

Adjustment for failure of sphericity 

Tests for univariate homogeneity of variance 

Test for homogeneity of covariance matrices 
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Feature 

SYST.T 
ANOVA, 

SPSS SPSS S AS GLltl, and 
G I h I  MANOVA GLM RIANOVAg 

Output (continued) 

Principal component analysis of residuals No Yes No Yes 

Hypothesis SSCP matrices Yes No Yes Yes 

Hypothesis coyariance matrices No Yes No No 

Inverse of hypothesis SSCP matrices No No Yes Yes 

Pooled within-cell error SSCP matrix Yes Yes Yes Yes 

Pooled within-cell covariance matrix No Yes No Yes 

I Pooled within-cell correlation matrix 

Total SSCP matrix 

I 
Determinants of pooled within-cell 

c ~ x e l a t i m  matrix 

1 Covariance matrix for adjusted cell means 

Effect size for univariate tests 
I Power analysis 

SMCs with effects for each DV 

Confidence intervals for multivariate tests 

Post hoc tests with adjustment 

1 Specific comparisons 

Tests of simple effects (complete) 

Homogeneity of regression 

ANCOVA with separate regression estimates I Regression coefficient for each covariate 
I 

Regression coefficient for each cell 

R~ for model 
I 

I Coefficient of variation 

Normalized plots for each DV and covariate 

Predicted values and residuals for each case 

No Yes 

No No 

No 

No 

ETASQ 

OPOWER 

No 

No 

POSTHOC 

Yes 

No 

No 

No 

PARAMETER 

Yes 

No 

POWER 

POWER 

No 

Yes 

yesd 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes No 

Yes No 

No No 

No Yes 

Data file Yes 

Yes Yes 

No Yes 

No 

Data file 

No 

 NO^ 
No 

No 

Yes 

Yes 

No 

No 

No 

No 

Yes 

Yes 

Yes 

No 

Yes 

No 

No 

No 

No 

Yes 

No 

Yes 

Yes 

No 

Yes 

No 

PRINT 
LONG 

No 

No 

No 

No 

Data file 

Confidence limits for predicted values No No Yes No 

Residuals plots No Yes No No 

"dd~t~onal features are d~scussed In Chapter 6 (ANCOVA) 
b ~ v a ~ l a b l e  through CONSPLUS procedure, see Sect~on 7 6 
CD~scussed more fully In Chapter 9 

dBonferroni and S~heffe  ~onfidcnce interval\ 

'One-way des~gn unly 
'Ava~lable In a separate program GLMPOWER 
%TANOVA, added to SYSTAT In Vers~on I I ,  differs from GLM only In ~ t s  menu access 
h ~ o t  available In "long" output 
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7.7.2 SAS System 

MANOVA in SAS is done through the PROC GLM. This general linear model program, like SPSS 
GLM, has great flexibility in testing models and specific comparisons. Four types of adjustments for 
unequal-rz are available, called T Y P E  I through T Y P E  I V estimable functions (cf. 6.5.4.2); this 
program is considered by some to have provided the archetypes of the choices available for unequal- 
n adjustment. Ad.justed cell and marginal means are printed out with the 1 S M E A N S instruction. SAS 
tests multivariate outliers by adding leverage values (which may be converted to Mahalanobis dis- 
tance) to the data set (cf. Section 6.6.1.4). Exact tests of multivariate effects may be requested in 
place of the usual F approximation. 

SAS GLM provides Greenhouse-Geisser and Huynh-Feldt adjustments to degrees of freedom 
and significance tests for effects using adjusted df. There is no explicit test for homogeneity of 
regression, but because this program can be used for any form of multiple regression, the assumption 
can be tested as a regression problem where the interaction between the covariate(s) and IV(s) is an 
explicit term in the regression equation (Section 6.5.3). 

There is abundant information about residuals, as expected from a program that can be used 
c,.* -..I+:.. -.-- @ I  --.. 1 1  L- - I - &  - - - : ~ . . - i -  L -- - LL L AL -  n T  AT - - - -  
lvi ltlulupl~ 1 ~ ~ ~ c s a ; u t l .  o l t u u ~ u  y u u  W ~ I I L  LU ~ I U L  I G ~ I U U ~ I S ,  IIUWCVGI, d IUI I  L I I I U U ~ I I  LIIG rLu1 ~ I U L G -  

dure is required. As with most SAS programs, the output requires a fair amount of effort to decode 
until you become accustomed to the style. 

7.7.3 SYSTAT System 

In SYSTAT, the GLM, ANOVA, and MANOVA programs may be used for simple, fully factorial 
MANOVA, however GLM and MANOVA are recommended for more complex designs for their 
numerous features and flexibility. and because they are not much more difficult to set up. 

Model 1 adjustment for unequal n is provided by default, along with a strong argument as to 
its benefits. Other options are available, however, by specification of error terms or a series of 
sequential regression analyses. Several criteria are provided for tests of multivariate hypotheses, 
along with a great deal of flexibility in specifying these hypotheses. Leverage values are saved in a 
data set by request, arid Inay be converted to Mahalanobis distance as per Equation 4.3 to assess mul- 
tivariate outliers. 

The program provides cell least squares means and their standard errors, adjusted for covari- 
ates, if any. Other univariate statistics are not provided in the program, but they can be obtained 
through the STATS module. 

Like SPSS MANOVA, principal components analysis can be done on the pooled within-cell 
correlation matrix. But also like the SPSS program, the MANOVA is performed on the original 
scores. 




